NIST workshop on applied category theory

Towards an operad of goals

Steve Huntsman

BAE Systems FAST Labs (goo.gl/Vrsqgm)

15 March 2018

This is deliberately preliminary and hopefully provocative

Autonomous systems of systems (SoSs)

- Autonomous SoSs require us to design properties that are
 - Global (⇒ topology)
 - Emergent (⇒ statistical physics)
 - Compositional (⇒ category theory)
- Very rare to see work that applies even two of these fields
- Goal: sketch one way that all three might usefully contribute
 - Simplicial sets (roles), sheaves (data fusion), ... skipping this
 - Renormalization
 - Operads
- Ideal: model SoSs with a compositional framework capable of capturing emergent and global properties
 - Account for variation through scoped parameters/settings

Statistical physics: renormalization "group"

- Physical perspective informed by Kadanoff, Wilson, et al.
 - Theory given by a function $f(\xi; \pi)$ of data ξ and parameters π
 - If for a suitable coarsening operator C there exists g s.t. $f(\xi; \pi) = f(C(\xi); g(\pi))$ then theory is renormalizable
 - Fixed point for infinite domains is of great physical interest
- The nLab features a very fancy QFT-oriented treatment that goes in the direction of refinement vs. coarsening
 - Higher-order Feynman diagrams (insertion operad!)
- We are not going to do anything fancy in what's next
 - f is a weighted average of finitely many function translates
 - ξ is the set of translation points; π is the weighting
 - C clusters translation points (BTW, single linkage is a functor)
 - g renormalizes a probability distribution based on clustering

The monopole operad

- Intuition: in far field, many point masses act like a single one
- Ingredients
 - Little disks operad
 - Probability operad
 - "Homogeneous" potential $V(r) := r^{-k}$ or $-\log r$
- Sources and weights $(\xi,\pi)\in (\mathbb{R}^d)^n imes \Delta^n$
- Operations: $V_{\xi,\pi}(x) := \sum_j \pi_j V(|x-\xi_j|) \sim V(|x|)$
- Composition also ~ V(|x|):

$$V_{\xi,\pi} \circ \left(V_{\xi^{(1)},\pi^{(1)}},\ldots,V_{\xi^{(n)},\pi^{(n)}}
ight)(x) := \sum_{j} \pi_{j} V_{\xi^{(j)},\pi^{(j)}}(x-\xi_{j})$$

So what?

- Ideal: model SoSs with a compositional framework suitable for engineering emergent and global properties
 - Account for details with scoped parameters, decorations, etc.
- Example: want a multiagent system that features
 - Distributed planning with $\ll n^2$ communications overhead
 - Robustness under addition/subtraction of agents
- Possible ingredients for (de)composing:
 - Tasks (flow graph operad)
 - Slides at math.ucr.edu/home/baez/ACT2017
 - Some notion of geometry necessary for motion planning
 - Constraints ("SAT operad")
 - Teams (simplicial operad)
 - Topology characterizes horizontal relationships
 - Communications (want an operadic framework!)

Artificial potentials

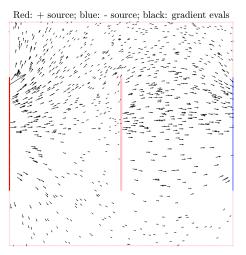
- Classic alternative to discretizing space for motion planning
 - Involves attractive (goal) and repulsive (obstacle) terms
 - Agents repel each other
 - Troublesome metastable minima can occur
 - Alas, the monopole operad can't handle signed terms
 - Total potential must represent complex spatial relationships
 - Many terms = expensive
 - Might still be useful for applications where space is discrete
 - E.g., graph Laplacian stuff
 - Not pulling on this thread here

The fast multipole method (FMM)

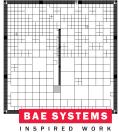
- FMM [Greengard & Rokhlin 1987] accurately simulates N interacting particles in O(N) (vs O(N²)) time
 - Named one of the top 10 algorithms of the 20th century [Dongarra & Sullivan (2000)]
- Two key ideas (approximate renormalization!)
 - Represent clusters of particles with multipole expansions that are as coarse (i.e., truncated) as possible in far-field
 - For approximation error arepsilon, truncate at $\lceil \log_2(1/arepsilon) \rceil$ terms
 - Nearby particles interact directly
 - Decompose space hierarchically to get well-separated clusters
- Works for (at least) homogeneous and logarithmic potentials
- Parallel version [Greengard & Gropp 1990] exploits locality

The fast multipole method (FMM)

Eval points $\sim \frac{4}{5}U(\text{top half}) + \frac{1}{5}U(\text{bottom half})$



Relative # of source points per leaf box (black = max

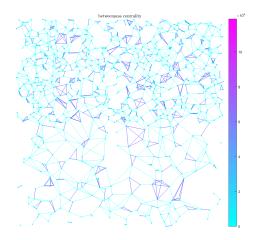


A multipole operad?

- The FMM builds a tree whose nodes are decorated with truncated multipoles
 - Approximates finer quadtree with monopoles on leaves
 - Tree topology doesn't depend on charge values
- We'll show how to use the FMM to build networks that seem to play nicely with
 - Little cubes operad
 - Motion plans
- This points towards our desiderata, viz.
 - Distributed planning with $\ll n^2$ communications overhead
 - Robustness under addition/subtraction of agents
- Exercise: how much of this can be realized operadically?

Coordination topology

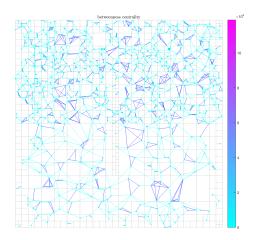
- Connect all nodes in the same leaf box
- Connect nearest nodes in adjacent boxes
- Connect orphans to nearest nodes (not shown)



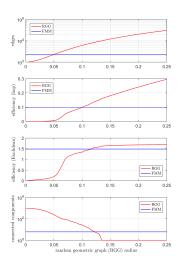
11

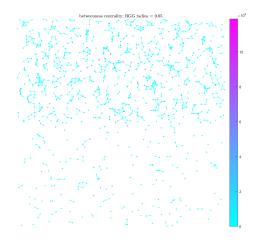
Coordination topology

- Connect all nodes in the same leaf box
- Connect nearest nodes in adjacent boxes
- Connect orphans to nearest nodes (not shown)



Comparison with random geometric graphs

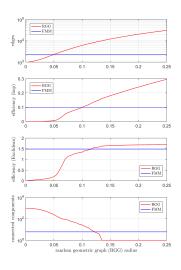


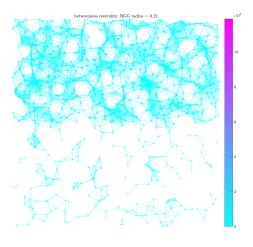


$$\mathsf{efficiency} = \langle d_{jk}^{-1} \rangle_{j \neq k}$$

13

Comparison with random geometric graphs

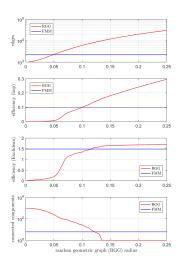


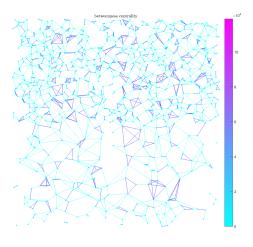


efficiency
$$=\langle d_{jk}^{-1}
angle_{j
eq k}$$

14

Comparison with random geometric graphs





efficiency
$$=\langle d_{jk}^{-1}
angle_{j
eq k}$$

15

Towards an operad of goals

- FMM-based framework for networks and motion plans
 - How much of this can be realized operadically?
- Flow graph operad for tasks
- SAT operad for constraints
 - Weighted MAX-SAT for optimization
- Simplicial operad for teams and requirements
 - Matching a team to requirements amounts to finding an optimal (not necessarily surjective) simplicial map
- Topology, statistical physics, and category theory can (and likely will) have something to contribute to the development of autonomous systems of systems

16

BAE Systems FAST Labs (goo.gl/Vrsqgm)

steve.huntsman@baesystems.com

Moving parts for classical case

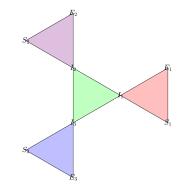
- dim = 2, $V = -\log$, charges q_j at $z_j \in \mathbb{C}$; take real parts
- Set $Q := \sum_{j} q_{j}; A := \sum_{j} |q_{j}|; a_{\ell} := -\sum_{j} q_{j} z_{j}^{\ell} / \ell; r > \max |z_{j}|$
- Multipole expansion with error bounds:

$$\left|\sum_{j} q_j \log(z-z_j) - Q \log z - \sum_{\ell=1}^{L} \frac{a_\ell}{z^\ell}\right| \stackrel{|z|>r}{\leq} \frac{A}{\left(\frac{|z|}{r} - 1\right) \left(\frac{|z|}{r}\right)^L}$$

 More involved error bounds for shifting centers of multipole expansions, converting them to Taylor series, and shifting the Taylor expansions

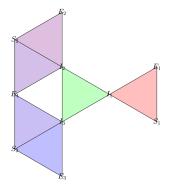
Topology: simplicial sets, sheaves, etc.

Subsystem interfaces I_j Sensors S_j Effectors E_j



Topology: simplicial sets, sheaves, etc.

 $\begin{array}{l} k\text{-simplices: roles w} / \ k-1 \ \text{players} \\ \text{Subsystem interfaces } I_j \\ \text{Sensors } S_j \\ \text{Effectors } E_j \\ \text{Fusing sensors} \Rightarrow \text{nontrivial homology} \end{array}$



20