A short introduction to a general theory of interactivity

Stéphane Dugowson Supmeca (Paris) Applied Category Theory Workshop NIST / Gaithersburg, MD March 15 & 16, 2018 A short introduction to a general theory of interactivity

> taking the Conway's Game of Life as a guiding thread

Stéphane Dugowson Supmeca (Paris) Applied Category Theory Workshop NIST / Gaithersburg, MD March 15 & 16, 2018

GoL Rules

3 neighbors → 1 (= alive)
2 neighbors → unchanged state
otherwise → 0 (= dead)

• 3 neighbors \rightarrow 1 (= alive) • 2 neighbors \rightarrow unchanged state • otherwise $\rightarrow 0$ (= dead)

A discrete dynamical system

The Conway's game of life as a functor

A discrete dynamical system

The Conway's game of life as a functor

A discrete dynamical system

The Conway's game of life as a functor

Remark : discrete dynamical systems constitute a topos of presheaves

The one-step global model

The one-step global model

X $E_0 \xrightarrow{d} E_1$ 0 with Ez={02, 16} where 05= (0,5) 12=(1,2) and [05]=0 and d^x: Eo -> E1 defined by (Nij) - (Yij) I2 defined by [1]=1 $\begin{aligned} \mathcal{Y}_{ij} & \begin{cases} \mathcal{T}_{ij} = 3 \implies \mathcal{Y}_{ij} = \mathcal{I}_{1} \\ \mathcal{T}_{ij} = 2 \implies [\mathcal{Y}_{ij}] = [\mathcal{X}_{ij}] \\ dhuwise, \qquad \mathcal{Y}_{ij} = 0_{1} \end{cases} \end{aligned}$ where $T_{i:} = \underbrace{\sum_{\substack{(k,l) \in \mathcal{N}_{i_j}}} \left[\begin{array}{c} x_{kl} \\ \end{array} \right]}_{(k,l) \in \mathcal{N}_{i_j}}$ and $\underbrace{\mathcal{N}_{i_j}}_{i_j} = \left\{ \begin{pmatrix} k_i \end{pmatrix} + \begin{pmatrix} i_{j_j} \\ \end{pmatrix} \\ \begin{pmatrix} j_{j-l} \\ \atop j \\ \end{array} \right\}$

Functorial dynamics

Functorial dynamics

Functorial dynamics

Functorial dynamics

Functorial dynamics

engine

Functorial dynamics

Global models GoL Rules A discrete dynamical system

The one-step model

Functorial dynamics

engine, durations,

Functorial dynamics

Functorial dynamics

engine, durations, clock,

Functorial dynamics

Functorial dynamics

engine, durations, clock, datation,

Functorial dynamics

Functorial dynamics

engine, durations, clock, datation, instants,

Functorial dynamics

dynamical system

The one-step model

Functorial dynamics

engine, durations, clock, datation, instants,

Functorial dynamics

Functorial dynamics : realizations

Functorial dynamics : realizations

Functorial dynamics : realizations

Toolo G Idok

An individual cell of the (one-step) Game of Life

An individual cell of the (one-step) Game of Life

An individual cell of the (one-step) Game of Life

An indeterministic cell of the Game of Life ?

An indeterministic cell of the Game of Life?

 $\left(d_{\lambda}^{d}\right)_{\lambda \in L}$ $\begin{array}{c} \overset{d}{\rightarrow} \\ \overset{d}{\rightarrow}$

Rel = the category with f. sets . non-determinist transitions binary relations

An indeterministic cell of the Game of Life

Rel = the category with for sets +ransitions binary relations

Definition of an open functorial dynamic

An open (functorial) Lynamic $\xrightarrow{\alpha} P^{\xrightarrow{\perp}} = (P^{\rightarrow}) \xrightarrow{\tau} (P^{\rightarrow})$ D-

Definition of an open functorial dynamic

Hn open (functorial) Lynamic

Realizations of an open dynamic

A realization of (d, T) is (tir) with LEL and J:h -> ~ A.t. LOS G Idy and

An interactive family \mathcal{F} will be given by

• a family of open dynamics $(\mathcal{A}_i)_{i \in I}$

 $\left(\mathcal{A}_{i}^{i}=\left(\left(\mathcal{D}_{i}^{i}\xrightarrow{di}\mathcal{P}^{\rightarrow}\right)\xrightarrow{\mathcal{L}_{i}}\left(\mathcal{D}_{i}^{i}\xrightarrow{hi}\mathcal{Sets}\right)\right)_{i\in\mathcal{I}}$

An interactive family \mathcal{F} will be given by

• a family of open dynamics $(\mathcal{A}_i)_{i \in I}$

 $\left(\mathcal{A}_{i}^{i}=\left(\left(\mathcal{D}_{i}^{i}\xrightarrow{\mathcal{A}_{i}^{i}}\mathcal{P}^{\xrightarrow{\mathcal{L}_{i}^{i}}}\right)\xrightarrow{\mathcal{D}_{i}^{i}}\left(\mathcal{D}_{i}^{i}\xrightarrow{h_{i}^{i}}\mathcal{Sets}\right)\right)\right)_{i\in\mathcal{I}}$

• a synchronization,

An interactive family \mathcal{F} will be given by

• a family of open dynamics $(\mathcal{A}_i)_{i \in I}$

 $\left(\mathcal{A}_{i}^{i}=\left(\left(\mathcal{D}_{i}^{i}\overset{di}{\longrightarrow}\mathcal{P}\overset{i}{\rightarrow}\right)\overset{di}{\xrightarrow{}}\left(\mathcal{D}_{i}\overset{hi}{\longrightarrow}\mathcal{S}ets\right)\right)\right)_{i\in\mathcal{I}}$

- a synchronization,
- an interaction.

Interactive families

synchronization

Synchronization

A synchronization for a family $(\mathcal{A}_i)_{i \in I}$ of open dynamics is given by :

- An index $i_0 \in I$, called the *conductor*,
- A family of functors and monotonic maps which associate instants of clocks to the instants of the conductor

An *interaction* is defined as a <u>multiple relation</u> between realizations and parameters.

An *interaction* is defined as a <u>multiple relation</u> between realizations and parameters.

For example : $\left| \mathcal{R} \right| = \left\{ \begin{pmatrix} \lambda_{ij} \\ \sigma_{ij} \\ \sigma_{ij} \end{pmatrix} \text{ such that } \left\{ \begin{array}{l} \lambda_{ij} = \sum_{(k,\ell) \in \mathcal{M}_{ij}} \tau_{k\ell}(\sigma) \\ \sigma_{ij} \in \mathcal{I}_{k} \\ \sigma_{ij} \in \mathcal{I}$ where I is the set of realizations of the open cell &

An *interaction* is defined as a <u>multiple relation</u> between realizations and parameters.

Generally,

parameters are linked not only with *"current" states*, but with *whole realizations* of the concerned dynamics.

flt Mul-5 m

interaction

a remark about future

 $x'(t) + \xi x(t) = f(t)$ $x(0) = x_0$ $x'(0) = v_0$

flt MM-5 m

Interactive families

synchronization

interaction

a remark about future

 $\mathfrak{x}(c) + \mathfrak{z}(t) = \mathfrak{f}(t)$ $\mathfrak{x}(c) = \mathfrak{x}_{0}$ x'(0) = vo

m

 $\alpha(t) = \frac{1}{\sqrt{m 2}} \int_{\lambda=0}^{\lambda=t} fin\left(\sqrt{\frac{2}{m}}(t-s)\right) f(s) ds$ + 1 1/2 vo sin (1/2 E) + xo cos (1/2 E)

Interactive families

synchronization interaction a remark

about future

 $\mathfrak{x}(c) + \mathfrak{z}(t) = \mathfrak{f}(t)$ $\mathfrak{x}(c) = \mathfrak{x}_{0}$ x'(0) = vo

m

 $\alpha(t) = \frac{1}{\sqrt{m 2}} \int_{A=0}^{A=t} fin\left(\sqrt{\frac{4}{m}}(t-a)\right) f(a) da$ + 1 1/2 vo sin (1/2 E) + x Cos (1/2 E)

a remark about future

the future will often depend on the future

interaction

a remark about future

connectivity

About the connectivity structure of interactions

arXiv.org > math > arXiv:1505.05996

Mathematics > General Topology

Connectivity structure of multiple relations

Stéphane Dugowson (LISMMA)

(Submitted on 22 May 2015)

interaction

a remark about future

connectivity

About the connectivity structure of interactions

arXiv.org > math > arXiv:1505.05996

Mathematics > General Topology

Connectivity structure of multiple relations

Stéphane Dugowson (LISMMA) (Submitted on 22 May 2015)

interaction

a remark about future

connectivity

About the connectivity structure of interactions

arXiv.org > math > arXiv:1505.05996

Mathematics > General Topology

Connectivity structure of multiple relations

Stéphane Dugowson (LISMMA) (Submitted on 22 May 2015)

interaction

a remark about future

connectivity

About the connectivity structure of interactions

arXiv.org > math > arXiv:1505.05996

Mathematics > General Topology

Connectivity structure of multiple relations

Stéphane Dugowson (LISMMA) (Submitted on 22 May 2015)

Interactive families

Components (open dynamics)

Interactive families

Components (open dynamics)

The generated dynamics are only "sub-functorial".

Components (open dynamics)

The generated dynamics are only "sub-functorial".

(this can be interpreted as a kind of lax-functoriality)

Sub-functorial dynamics

 $A \stackrel{\alpha}{\sim} B \stackrel{\alpha}{\sim} C \stackrel{$ A -> B -> C d P->

Sub-functorial dynamics

 $A^{\alpha} \approx B^{\alpha} \approx C^{\alpha}$ $(d^{\alpha}_{\lambda}), \qquad f^{\alpha} = f^{\alpha}$ A -> R -> r d P-S

 $\forall \lambda \in L, \begin{cases} (\mathrm{Td}_{A})_{\lambda}^{\alpha} \subseteq \mathrm{Td}_{A}^{\alpha} \\ e_{\lambda}^{\alpha} \circ d_{\lambda}^{\alpha} \subseteq (\mathrm{eod})_{\lambda}^{\alpha} \end{cases}$

relax !

sub-functorial dynamics

inclusion properties open timeless dynamics

Open timeless dynamics

 $\forall \lambda \in L, \begin{cases} (Id_A)^{\alpha}_{\lambda} \subseteq Id_{A^{\alpha}} \\ aud \\ e^{\alpha}_{\lambda} \circ d^{\alpha}_{\lambda} \subseteq (e \circ d)^{\alpha}_{\lambda} \end{cases}$

relax !

sub-functorial dynamics

inclusion properties open timeless dynamics

Open timeless dynamics

 $\forall \lambda \in L, \begin{cases} (Id_A)^{k}_{\lambda} \subseteq Id_{A^{k}} \\ e^{k}_{\lambda} \circ d^{k}_{\lambda} \subseteq (e \circ d)^{k}_{\lambda} \end{cases}$

CIJE

An example of an interaction between timeless dynamics

×

a "zero-step game of life" individual cells is a timeless deterministic dynamic.

An example of an interaction between timeless dynamics

a "zero-step game of life" individual cells is a timeless deterministic dynamic.

The interaction between 3 such dynamics such that at least one of their realisations is "alive"...

An example of an interaction between timeless dynamics

a "zero-step game of life" individual cells is a timeless deterministic dynamic.

The interaction between 3 such dynamics such that at least one of their realisations is "alive"...

has a borromean connectivity

inclusion properties open timeless dynamics a borromean interaction

(an example of a **normal** borromean interaction between three timeless open dynamics)

Then the functional interaction defined by $|R| = \left\{ \begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \sigma_1 & \sigma_2 & \sigma_3 \end{pmatrix} \right\}$ such that $\forall i \in \{1, 2, 3\}, \qquad \begin{bmatrix} \Sigma & \nabla_{j} = 0 \implies \lambda_{i} = b \\ j \neq i \end{bmatrix}$ otherwise $\lambda_{i} = a$ $\left(aud \quad \tau_i \in \mathcal{G}_{\lambda_i}\right)$ is borrousau

Generated global dynamics

relax !

sub-functorial dynamics

inclusion properties open timeless dynamics a borromean interaction

The theorem

The fundamental theorem

Any interactive family of subfunctorial open dynamics generates some global subfunctorial open dynamics.

see § 3.1 and §3.2 in

arXiv.org > math > arXiv:1608.07938

Mathematics > Dynamical Systems

Interacting Dynamics

Stéphane Dugowson (Quartz)

(Submitted on 29 Aug 2016 (v1), last revised 30 Aug 2016 (this version, v2))

https://arxiv.org/abs/1608.07938

Generated global dynamics

relax !

sub-functorial dynamics

inclusion properties open timeless dynamics a borromean interaction

The theorem

The fundamental theorem

Any interactive family of subfunctorial open dynamics generates some global subfunctorial open dynamics.

see § 3.1 and §3.2 in

arXiv.org > math > arXiv:1608.07938

Mathematics > Dynamical Systems

Interacting Dynamics

Stéphane Dugowson (Quartz) (Submitted on 29 Aug 2016 (v1), last revised 30 Aug 2016 (this version, v2))

https://arxiv.org/abs/1608.07938

• The theory of open sub-functorial dynamics is a language to describe and **imagine** many kinds of interacting dynamics, each with its own temporality.

Conclusion

 The theory of open sub-functorial dynamics is a language to describe and imagine many kinds of interacting dynamics, each with its own temporality.

We can design many *temporal* variants of the game of life in which some cells could have

- continuous time,
- cyclic time,
- multi-dimensionnal time,
- non-monoidal time,
- "free will",
- etc...

Conclusion

- The theory of open sub-functorial dynamics is a language to describe and **imagine** many kinds of interacting dynamics, each with its own temporality.
- It would be interesting to study the connections with some other theories concerning open systems, like the one developed by D. Spivak, C. Vasilakopoulou and P. Schultz.

- The theory of open sub-functorial dynamics is a language to describe and **imagine** many kinds of interacting dynamics, each with its own temporality.
- It would be interesting to study the connections with some other theories concerning open systems, like the one developed by D. Spivak, C. Vasilakopoulou and P. Schultz.
 - Some connectivity aspects still have to be developed.

References

S. Dugowson

- <u>Dynamiques en interaction : une introduction à la théorie des dynamiques sous-fonctorielles</u> <u>ouvertes. 39 pages. 29 août 2016 <hal-01357009></u>
- <u>Structure connective des relations multiples, HAL (mai 2015)</u>.
- Introduction aux dynamiques catégoriques connectives, HAL, (décembre 2011)
- On Connectivity Spaces, Cahiers de topologie et géométrie différentielle catégoriques LI, 4 (2010) 282-315.

A. (Bastiani) Ehresmann

Sur le problème général d'optimisation. In *Identification, Optimisation et Stabilité (actes du congrès d'automatique théorique, Paris 1965)*. Dunod, 1967

D. Spivak, C. Vasilakopoulou and P. Schultz

Dynamical Systems and Sheaves, sept 2016, arXiv.

