
Categorical Databases

Patrick Schultz, David Spivak
MIT

Ryan Wisnesky
Categorical Informatics

and others

November 2017

Introduction

§ This talk describes a new algebraic (purely equational) way to
formalize databases based on category theory.

§ Category theory was designed to migrate theorems from one area of
mathematics to another, but researchers at MIT developed a way to
use it to migrate data from one schema to another.

§ Research has culminated in an open-source prototype ETL and data
integration tool, AQL (Algebraic Query Language), available at
categoricaldata.net/aql.html. (These slides are also there.)

§ Goal: Categorical databases needs you – needs a community – to
grow.

§ Outline:
§ Review of basic category theory.
§ Introduction to AQL.
§ AQL demo.
§ Optional interlude: additional AQL constructions.
§ How AQL instances model the simply-typed λ-calculus.

2 / 36

AQL Value Proposition

§ AQL implements this talk in software.
§ catinf.com

§ The AQL “execution engine” is an automated theorem prover.
§ High-assurance: AQL catches mistakes at compile time that existing

ETL / data integration tools catch at runtime – if at all.
§ Data import and export by JDBC-SQL and CSV.

§ We are looking for collaborators for “real-world pilot projects”.

3 / 36

Category Theory
§ A category C consists of

§ a set of objects, ObpCq
§ forall X,Y P ObpCq, a set CpX,Y q of morphisms a.k.a arrows
§ forall X P ObpCq, a morphism id P CpX,Xq
§ forall X,Y, Z P ObpCq, a function ˝ : CpY, Zq ˆ CpX,Y q Ñ CpX,Zq s.t.

f ˝ id “ f id ˝ f “ f pf ˝ gq ˝ h “ f ˝ pg ˝ hq

§ The category Set has sets as objects and functions as arrows, and the “category”
Haskell has types as objects and programs as arrows.

§ A functor F : C Ñ D between categories C,D consists of

§ a function ObpCq Ñ ObpDq
§ forall X,Y P ObpCq, a function CpX,Y q Ñ DpF pXq, F pY qq s.t.

F pidq “ id F pf ˝ gq “ F pfq ˝ F pgq

§ The functor P : SetÑ Set takes each set to its power set, and the functor
List : HaskellÑ Haskell takes each type t to the type List t.

4 / 36

Schemas and Instances

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zz
String
‚

rmanager.workss “ rworkss rsecretary.workss “ rs

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name

q10 101 CS

x02 102 Math

String

ID

Al

Bob

. . .

5 / 36

An AQL Schema: Code

entities

Emp

Dept

foreign keys

manager : Emp -> Emp

works : Emp -> Dept

secretary : Dept -> Emp

attributes

first last : Emp -> string

name : Dept -> string

path equations

manager.works = works

secretary.works = Department

6 / 36

Categorical Semantics of Schemas and Instances

§ The meaning of a schema S is a category JSK.
§ Ob(JSK) is the nodes of S.
§ Forall nodes X,Y , JSKpX,Y q is the set of finite paths X Ñ Y , modulo

the path equivalences in S.
§ Path equivalence in S may not be decidable! (“the word problem”)

§ A morphism of schemas (a “schema mapping”) S Ñ T is a functor
JSK Ñ JT K.

§ It can be defined as an equation-preserving function:

nodespSq Ñ nodespT q edgespSq Ñ pathspT q.

§ An S-instance is a functor JSK Ñ Set.
§ It can be defined as a set of tables, one per node in S and one column

per edge in S, satisfying the path equivalences in S.

§ A morphism of S-instances I Ñ J (a “data mapping”) is a natural
transformation I Ñ J .

§ Instances on S and their mappings form a category, written S-inst.

7 / 36

Schema Mappings
A schema mapping F : S Ñ T is an equation-preserving function:

nodespSq Ñ nodespT q edgespSq Ñ pathspT q

String
‚

N1
‚

name
??

salary

f // N2
‚

age~~
‚
Int

F
ÝÝÝÑ

String
‚

N
‚

name

OO

age
��

salary
��
‚
Int

F pIntq “ Int F pStringq “ String

F pN1q “ N F pN2q “ N

F pnameq “ rnames F pageq “ rages F psalaryq “ rsalarys

F pfq “ rs

8 / 36

Functorial Data Migration

A schema mapping F : S Ñ T induces three data migration functors:

§ ∆F : T -inst Ñ S-inst (like project)

S
F //

∆F pIq :“ I˝F

66T
I // Set

§ ΠF : S-inst Ñ T -inst (right adjoint to ∆F ; like join)

@I, J. S-instp∆F pIq, Jq – T -instpI,ΠF pJqq

§ ΣF : S-inst Ñ T -inst (left adjoint to ∆F ; like outer union then merge)

@I, J. S-instpJ,∆F pIqq – T -instpΣF pJq, Iq

9 / 36

∆ (Project)

String
‚

N1
‚

name
??

salary

N2
‚

age~~
‚
Int

F
ÝÝÝÑ

String
‚

N
‚

name

OO

age
��

salary
��
‚
Int

N1

ID name salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID age

4 20

5 20

6 30

∆F
ÐÝÝ

N

ID name salary age

a Alice $100 20

b Bob $250 20

c Sue $300 30

10 / 36

Π (Product)
String
‚

N1
‚

name
??

salary

N2
‚

age~~
‚
Int

F
ÝÝÝÑ

String
‚

N
‚

name

OO

age
��

salary
��
‚
Int

N1

ID name salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID age

4 20

5 20

6 30

ΠF
ÝÝÑ

N

ID name salary age

a Alice $100 20

b Alice $100 20

c Alice $100 30

d Bob $250 20

e Bob $250 20

f Bob $250 30

g Sue $300 20

h Sue $300 20

i Sue $300 30

11 / 36

Σ (Outer Union)

String
‚

N1
‚

name
??

salary

N2
‚

age~~
‚
Int

F
ÝÝÝÑ

String
‚

N
‚

name

OO

age
��

salary
��
‚
Int

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

ΣF
ÝÝÑ

N

ID Name Salary Age

a Alice $100 null1
b Bob $250 null2
c Sue $300 null3
d null4 null5 20

e null6 null7 20

f null8 null9 30

12 / 36

Unit of ΣF % ∆F

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

ΣF
ÝÝÑ

N

ID Name Salary Age

a Alice $100 null1
b Bob $250 null2
c Sue $300 null3
d null4 null5 20

e null6 null7 20

f null8 null9 30
§

§

đ
η

∆F

Ö

N1

ID Name Salary

a Alice $100

b Bob $250

c Sue $300

d null4 null5
e null6 null7
f null8 null9

N2

ID Age

a null1
b null2
c null3
d 20

e 20

f 30

13 / 36

A Foreign Key

String
‚

N1
‚

name
??

salary
f

// N2
‚

age~~
‚
Int

F
ÝÝÝÑ

String
‚

N
‚

name

OO

age
��

salary
��
‚
Int

N1

ID name salary f

1 Alice $100 4

2 Bob $250 5

3 Sue $300 6

N2

ID age

4 20

5 20

6 30

∆F
ÐÝÝ

ΠF ,ΣF
ÝÝÝÝÝÑ

N

ID name salary age

a Alice $100 20

b Bob $250 20

c Sue $300 30

14 / 36

Queries
A query Q : S Ñ T is a schema X and mappings F : S Ñ X and
G : T Ñ X.

evalQ – ∆G ˝ΠF coevalQ – ∆F ˝ΠG

These can be specified using comprehension notation similar to SQL.

String
‚

N1
‚

name
??

salary

f // N2
‚

age~~
‚
Int

Q
ÐÝ

String
‚

N
‚

name

OO

age
��

salary
��
‚
Int

N1 -> select n1.name as name, n1.salary as salary

from N as n1

N2 -> select n2.age as age

from N as n2

f -> {n2 -> n1}
15 / 36

A Foreign Key

String
‚

N1
‚

name
??

salary
f

// N2
‚

age~~
‚
Int

Q
ÐÝ

String
‚

N
‚

name

OO

age
��

salary
��
‚
Int

N1

ID name salary f

1 Alice $100 4

2 Bob $250 5

3 Sue $300 6

N2

ID age

4 20

5 20

6 30

evalQ
ÐÝÝÝÝ
coevalQ
ÝÝÝÝÝÑ

N

ID name salary age

a Alice $100 20

b Bob $250 20

c Sue $300 30

16 / 36

AQL Demo

§ AQL implements ∆,Σ,Π, and more in software.
§ catinf.com

§ The AQL “execution engine” is an automated theorem prover.
§ Value proposition: AQL catches mistakes at compile time that existing

ETL / data integration tools catch at runtime – if at all.
§ Data import and export by JDBC-SQL and CSV.

§ We are looking for collaborators for a “real-world pilot project”.

17 / 36

Interlude - Additional Constructions

§ What is “algebraic” here?

§ AQL vs SQL.

§ Pivot.

§ Non-equational data integrity constraints.

§ Data integration via pushouts.

§ AQL vs comprehension calculi.

18 / 36

Why “Algebraic”?

§ A schema can be identified with an algebraic (equational) theory.

Emp Dept String : Type first last : Emp Ñ String name : Dept Ñ String

works : Emp Ñ Dept mgr : Emp Ñ Emp secr : Dept Ñ Emp

@e : Emp. workspmanagerpeqq “ workspeq @d : Dept. workspsecretarypdqq “ d

§ This perspective makes it easy to add functions such as
` : Int, Int Ñ Int to a schema. See Algebraic Databases.

§ An S-instance can be identified with the initial algebra of an algebraic
theory extending S.

101 102 103 : Emp q10 x02 : Dept

mgrp101q “ 103 worksp101q “ q10 . . .

§ Treating instances as theories allows instances that are infinite or
inconsistent (e.g., Alice=Bob).

19 / 36

AQL vs SQL

§ Data migration triplets of the form

ΣF ˝ΠG ˝∆H

can be expressed using relational algebra and keygen, provided:
§ F is a discrete op-fibration (ensures union compatibility).
§ G is surjective on attributes (ensures domain independence).
§ All categories are finite (ensures computability).

§ The difference-free fragment of relational algebra can be expressed
using such triplets. See Relational Foundations.

§ Such triplets can be written in “foreign-key aware” SQL-ish syntax.

20 / 36

Select-From-Where Syntax

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zz
String
‚

Find the name of every manager’s department:

AQL SQL

select e.manager.works.name select d.name

from Emp as e from Emp as e1, Emp as e2, Dept as d

where e1.manager = e2.ID and

e2.works = d.ID

21 / 36

Pivot (Instance ô Schema)

CS
‚

q10
‚name

oo 101
‚

works
oo first //

mgr

��

last

''Al
‚

Akin
‚

Math
‚

x02
‚name

oo 102
‚

works
oo first //

last

&&

mgr

QQ
Bob
‚

Bo
‚

103
‚

works

SS

mgr

QQ
first //

last

''Carl
‚

Cork
‚

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID name

q10 CS

x02 Math

22 / 36

Richer Constraints
§ Not all data integrity constraints are equational (e.g., keys).
§ A data mapping ϕ : AÑ E defines a constraint: instance I satisfies
ϕ if for every α : AÑ I there exists an ε : E Ñ I s.t α “ ε ˝ ϕ.

A

ϕ

��

α // I

E

ε

??

§ Most constraints used in practice can be captured the above way. E.g.,

@d1, d2 : Dept. namepd1q “ namepd2q Ñ d1 “ d2

is captured as

ApDeptq “ td1, d2u Apnameqpd1q “ Apnameqpd2q

EpDeptq “ tdu ϕpd1q “ ϕpd2q “ d

§ See Database Queries and Constraints via Lifting Problems and
Algebraic Model Management.

23 / 36

Pushouts

§ A pushout of p, q is f, g s.t. for every f 1, g1 there is a unique m s.t.:

‚

p

��

q

��
‚

f

��

f 1

""

‚

g

��

g1

||

‚

m
��
‚

§ The category of schemas has all pushouts.

§ For every schema S, the category S-inst has all pushouts.

§ Pushouts of schemas, instances, and Σ are used together to integrate
data - see Algebraic Data Integration.

24 / 36

Using Pushouts for Data Integration

§ Step 1: integrate schemas. Given input schemas S1, S2, an overlap
schema S, and mappings F1, F2:

S1
F1
Ð S

F2
Ñ S2

we propose to use their pushout T as the integrated schema:

S1
G1
Ñ T

G2
Ð S2

§ Step 2: integrate data. Given input S1-instance I1, S2-instance I2,
overlap S-instance I and data mappings h1 : ΣF1pIq Ñ I1 and
h2 : ΣF2pIq Ñ I2, we propose to use the pushout of:

ΣG1pI1q
ΣG1

ph1q
Ð

`

ΣG1˝F1pIq “ ΣG2˝F2pIq
˘ ΣG2

ph2q
Ñ ΣG2pI2q

as the integrated T -instance.

25 / 36

Schema Integration

Observation
‚

f

{{

g

""
Person
‚

Type
‚

ÝÝÑ

Observation
‚

f

{{

g1 // Method
‚

g2

��
Person
‚

Type
‚

Ó Ó

Observation
‚

f

{{

g

""
Person
‚

h
// Gender
‚

Type
‚

ÝÝÑ

Observation
‚

f

{{

g1 // Method
‚

g2

��
Person
‚

h
// Gender
‚

Type
‚

26 / 36

Data Integration

Observation
ID f g

Person
ID
p

Type
ID
BP
Wt

Ñ Gender
ID
F
M

Type
ID
BP
Wt
HR

Observation
ID f g
o5 Peter BP
o6 Paul HR
o7 Peter Wt

Person
ID h

Paul M
Peter M

Ó Ó

Method
ID g2
m1 BP
m2 BP
m3 Wt
m4 Wt

Type
ID
BP
Wt

Observation
ID f g1
o1 Pete m1
o2 Pete m2
o3 Jane m3
o4 Jane m1

Person
ID

Jane
Pete

Ñ Method
ID g2

null1 BP
null2 Wt
null3 HR
m1 BP
m2 BP
m3 Wt
m4 Wt

Observation
ID f g1
o1 Peter m1
o2 Peter m2
o3 Jane m3
o4 Jane m1
o5 Peter null1
o6 Paul null2
o7 Peter null3

Gender
ID
F
M

null4

Type
ID
BP
Wt
HR

Person
ID h

Jane null4
Paul M
Peter M

27 / 36

AQL vs LINQ
§ Treating entity sets as types rather than terms makes AQL a

conceptual dual to comprehension calculi (e.g., LINQ). See QINL:
Query-Integrated Languages.

§ LINQ enriches programs with (schemas, queries and instances).
§ Collections are terms

Employee : Set Int manager : Set pIntˆ Intq

§ e : Employee is not a judgment.
§ There is a term P : Intˆ Set Int Ñ Bool.

§ AQL enriches (schemas, queries and instances) with programs.
§ Collections are types

Employee : Type manager : Employee Ñ Employee

§ e : Employee is a judgment.
§ There is not a term P : Employeeˆ Type Ñ Bool.

§ LINQ is more popular, but AQL’s style is common in Coq, Agda, etc.

28 / 36

AQL is “one level up” from LINQ
§ LINQ

§ Schemas are collection types over a base type theory

Set pIntˆ Stringq

§ Instances are terms
tp1,CSqu Y tp2,Mathqu

§ Data migrations are functions

π1 : Set pIntˆ Stringq Ñ Set Int

§ AQL
§ Schemas are type theories over a base type theory

Dept, name : Dept Ñ String

§ Instances are term models (initial algebras) of theories

d1, d2 : Dept, namepd1q “ CS, namepd2q “ Math

§ Data migrations are functors

∆Dept : pDept, name : Dept Ñ Stringq - inst Ñ pDeptq - inst

29 / 36

Part 2

§ For every schema S, S-inst models simply-typed λ-calculus (STLC).

§ The STLC is the core of typed functional languages ML, Haskell, etc.

§ We will use the internal language of a cartesian closed category, which
is equivalent to the STLC.

§ Lots of “point-free” functional programming ahead.

§ The category of schemas and mappings is also cartesian closed - see
talk at Boston Haskell.

30 / 36

Categorical Abstract Machine Language (CAML)
§ Types t:

t ::“ 1 | tˆ t | tt

§ Terms f, g:

idt : tÑ t pqt : tÑ 1 π1
s,t : sˆ tÑ s π2

s,t : sˆ tÑ t

evals,t : t
s
ˆ sÑ t

f : sÑ u g : uÑ t

g ˝ f : sÑ t

f : sÑ t g : sÑ u

pf, gq : sÑ tˆ u

f : sˆ uÑ t

λf : sÑ tu

§ Equations:

id ˝ f “ f f ˝ id “ f f ˝ pg ˝ hq “ pf ˝ gq ˝ h pq ˝ f “ pq

π1
˝ pf, gq “ f π2

˝ pf, gq “ g pπ1
˝ f, π2

˝ fq “ f

eval ˝ pλf ˝ π1, π2
q “ f λpeval ˝ pf ˝ π1, π2

qq “ f

31 / 36

Programming AQL in CAML

§ For every schema S, the category S-inst is cartesian closed.
§ Given a type t, you get an S-instance rts.
§ Given a term f : tÑ t1, you get a data mapping rf s : rts Ñ rt1s.
§ All equations obeyed.

§ S-inst is further a topos (model of higher-order logic / set theory).

§ We consider the following schema in the examples that follow:

a
‚

f // b‚

32 / 36

Programming AQL in CAML: Unit

§ The unit instance 1 has one row per table:

a

ID f

x x

b

ID

x

§ The data mapping pqt : tÑ 1 sends every row in t to the only row in
1. For example,

t “

a

ID f

p q

r t

b

ID

q

t

pqt
ÝÝÑ

a

ID f

x x

b

ID

x

“ 1

p, q, r, t
pqt
ÝÝÑ x

33 / 36

Programming AQL in CAML: Products

§ Products sˆ t are computed row-by-row, with evident projections
π1 : sˆ tÑ s and π2 : sˆ tÑ t. For example:

a

ID f

1 3

2 3

b

ID

3

4

ˆ

a

ID f

a c

b c

b

ID

c

d

“

a

ID f

(1,a) (3,c)

(1,b) (3,c)

(2,a) (3,c)

(2,b) (3,c)

b

ID

(3,c)

(3,d)

(4,c)

(4,d)

§ Given data mappings f : sÑ t and g : sÑ u, how to define
pf, gq : sÑ tˆ u is left to the reader.

§ hint: try it on π1 and π2 and verify that pπ1, π2q “ id.

34 / 36

Programming AQL in CAML: Exponentials

§ Exponentials ts are given by finding all data mappings sÑ t:

a

ID f

1 3

2 3

b

ID

3

4

Ñ

a

ID f

a c

b c

b

ID

c

d

“

a

ID f

1 ÞÑ a, 2 ÞÑ b, 3 ÞÑ c, 4 ÞÑ d 3 ÞÑ c, 4 ÞÑ d

1 ÞÑ b, 2 ÞÑ a, 3 ÞÑ c, 4 ÞÑ d 3 ÞÑ c, 4 ÞÑ d

1 ÞÑ a, 2 ÞÑ a, 3 ÞÑ c, 4 ÞÑ d 3 ÞÑ c, 4 ÞÑ d

1 ÞÑ b, 2 ÞÑ b, 3 ÞÑ c, 4 ÞÑ d 3 ÞÑ c, 4 ÞÑ d

1 ÞÑ a, 2 ÞÑ b, 3 ÞÑ d, 4 ÞÑ c 3 ÞÑ d, 4 ÞÑ c

1 ÞÑ b, 2 ÞÑ a, 3 ÞÑ d, 4 ÞÑ c 3 ÞÑ d, 4 ÞÑ c

1 ÞÑ a, 2 ÞÑ a, 3 ÞÑ d, 4 ÞÑ c 3 ÞÑ d, 4 ÞÑ c

1 ÞÑ b, 2 ÞÑ b, 3 ÞÑ d, 4 ÞÑ c 3 ÞÑ d, 4 ÞÑ c

b

ID

3 ÞÑ c, 4 ÞÑ c

3 ÞÑ c, 4 ÞÑ d

3 ÞÑ d, 4 ÞÑ c

3 ÞÑ d, 4 ÞÑ d

§ Defining eval and λ are left to the reader.

35 / 36

Concusion

§ We described a new “algebraic” approach to databases based on
category theory.

§ Schemas are categories, instances are set-valued functors.
§ Three adjoint data migration functors, Σ,∆,Π manipulate data.
§ Instances on a schema model the simply-typed λ-calculus.

§ Our approach is implemented in AQL, an open-source project,
available at catinf.com.

§ Collaborators welcome!
§ We are looking for “real-world pilot projects”.

36 / 36

