Sheaf methods for inference

Michael Robinson
Acknowledgements

- Current students:
 - Eyerusalem Abebe
 - Phil Coyle
 - Brian DiZio
 - Jen Dumiak
 - Sean Fennell
 - Jackson Williams

- Funding: AFOSR, DARPA, ONR, OSD, AFRL, DTRA, PNNL

- SRC
 - Chris Capraro
 - Janelle Henrich
 - DJ Isereau
 - Sean Sweeney

- PNNL:
 - Cliff Joslyn
 - Katy Nowak
 - Brenda Praggastis
 - Emilie Purvine

Michael Robinson
Three main ideas in this talk

1. Model multi-way relations with **topological spaces**
2. Model consistency between observations with a **sheaf**
3. Measure observation quality by projecting them onto **sections** of that sheaf
Topological processing workflow

- Sensor deployment (no data)
- Sensor integration
- Cohomology
- Sheaf model
- Data fusion
- Sensor data
- Compute consistency radii
- Data quality estimates
- Sensor deployment analysis
- Unified global state
What is a sheaf?

A sheaf of ______________ on a ______________
(data type) (topological space)
Overlap constructs topology

no 2-simplex: there is a gap in scene coverage

2-simplex: there are scene points in common
Changing overlaps changes the topology

Coarse topology

Sensing domains

Sections

Finer topology
Sheaves are about consistency

Non-numeric data types of varying complexity can certainly be supported! (Emilie Purvine’s talk!)
Data self-consistency and quality
Topologizing a partial order

Intersections of up-sets are also up-sets
A sheaf on a poset is...

A set assigned to each element, called a stalk, and …

(The stalk on an element in the poset is better thought of being associated to the up-set)

This is a sheaf of vector spaces on a partial order
A sheaf on a poset is...

... restriction functions between stalks, following the order relation...

("Restriction" because it goes from bigger up-sets to smaller ones)

This is a sheaf of vector spaces on a partial order
An *assignment* is...

… the selection of a value from all stalks

The term *serration* is more common, but perhaps more opaque.
A global section is...

... an assignment that is consistent with the restrictions
Some assignments aren’t consistent

… but they might be partially consistent
Consistency radius is...

... the maximum distance between the value in a stalk and the values propagated along the restrictions (+1)

\[
\begin{vmatrix}
2 \\
3 \\
1
\end{vmatrix} + 1 -
\begin{vmatrix}
-2 \\
-3 \\
-1
\end{vmatrix} = 2\sqrt{14}
\]

\[
\begin{vmatrix}
1 \\
-1
\end{vmatrix} \left(\begin{vmatrix}
2 \\
3 \\
1
\end{vmatrix} \right) - 1 = 2
\]

\[
\begin{vmatrix}
0 1 1 \\
1 0 1
\end{vmatrix} - \begin{vmatrix}
3 \\
2
\end{vmatrix} = \sqrt{2}
\]

\[
\begin{vmatrix}
(0 1 1) \\
1 0 1
\end{vmatrix} - \begin{vmatrix}
3 \\
2
\end{vmatrix} \geq 2\sqrt{14}
\]

Note: lots more restrictions to check!
The space of global sections

It’s a subset of the product of the stalks over the minimal elements

Global sections $\subseteq \mathbb{R}^2 \times \mathbb{R}^3 \subseteq \mathbb{R}^{17}$

Thm: (R.) Consistency radius sets a lower bound on the distance to the nearest global section

Data fusion selects the nearest global section

Michael Robinson
The future

• Computational sheaf theory
 – Small examples can be put together *ad hoc*
 – Larger ones require a software library
• **PySheaf**: a software library for sheaves
 – https://github.com/kb1dds/pysheaf
 – The example is a unit test you can play with!
• Connections to statistical models need to be explored
• Extensive testing on various datasets and scenarios