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Complex systems are often studied and designed using
networks:

https://www.nature.com/articles/nrg3885


Categories and operads are uniquely suited to describing
networks and ways of composing them.

Networks can be connected ‘end to end’, in series:
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Networks can also be set ‘side by side’, in parallel:

t
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Mathematicians now understand these forms of composition
very well using categories with extra structure: monoidal
categories, dagger-compact categories, hypergraph
categories... all these are algebras of various operads.

In the Complex Adaptive System Composition and Design
Environment project, I’m working with Metron Scientific
Solutions to build networks using another form of composition:
overlaying.

The hope is that new ideas from category theory can give new
ways to design complex systems.

https://johncarlosbaez.wordpress.com/2018/02/19/complex-adaptive-systems-part-7/
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Sometimes we can ‘overlay’ two networks with the same
vertices. For example,

∪
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There are many kinds of networks, and many possible rules for
overlaying them.

Simple graphs:
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Multigraphs:
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Directed multigraphs:

∪ =

Directed multigraphs with colored edges and nodes:

∪ =

... and so on!

We should handle all these kinds of networks in a unified way.
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Define a network model to be a symmetric lax monoidal
functor

F : S(C)→ Mon

where S(C) is the free symmetric monoidal category on some
set C of vertex colors, and Mon is the category of monoids.

For example: if C = 1, S(C) is the groupoid of finite sets and
bijections. For any finite set X , F (X ) is the set of networks
having X as their set of vertices. This is a monoid, so we can
overlay networks:

∪ : F (X )× F (X )→ F (X )

Since F is lax monoidal we can also set networks ‘side by side’:

t : F (X )× F (Y )→ F (X + Y )
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For any network model F there is an operad OF whose
operations are ways to assemble networks of type F .

These
operations include overlaying networks, setting networks side
by side, and thus also attaching networks end to end.

The operad OF will have many algebras. These describe
different kinds of systems that can be modeled using networks
of type F . These algebras can involve:

• vertex attributes (e.g. location, possibly time-dependent)

• constraints on edges (e.g. range constraints)

and much more. Maps between algebras let us design and task
systems incrementally, adding a bit of detail at a time.
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For more see:

• John Baez, John Foley, Joseph Moeller and Blake Pollard,
Network models: arXiv:1711.00037.

• John Baez, Complex adaptive system design, Azimuth.

https://arxiv.org/abs/1711.00037
https://johncarlosbaez.wordpress.com/2018/02/19/complex-adaptive-systems-part-7/

