A higher-order temporal logic for dynamical systems

David I. Spivak* and Patrick Schultz

Mathematics Department Massachusetts Institute of Technology

NIST Applied Category Theory Workshop March 16, 2018

An example system

The National Airspace System (NAS).

- Goals of NextGen:
 - Double the number of airplanes in the sky;
 - Remain extremely safe.

¹Traffic Collision Avoidance System.

An example system

The National Airspace System (NAS).

- Goals of NextGen:
 - Double the number of airplanes in the sky;
 - Remain extremely safe.
- Safe separation problem:
 - Planes need to remain at a safe distance.
 - Can't generally communicate directly.
 - Use radars, pilots, ground control, radios, and TCAS.¹

¹Traffic Collision Avoidance System.

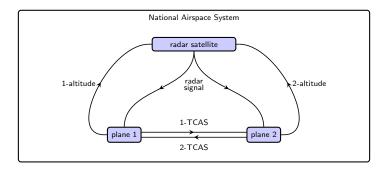
An example system

The National Airspace System (NAS).

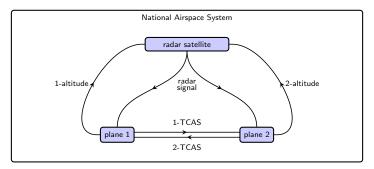
- Goals of NextGen:
 - Double the number of airplanes in the sky;
 - Remain extremely safe.
- Safe separation problem:
 - Planes need to remain at a safe distance.
 - Can't generally communicate directly.
 - Use radars, pilots, ground control, radios, and TCAS.¹
- Systems of systems:
 - A great variety of interconnected systems.
 - Work in concert to enforce global property: safe separation.

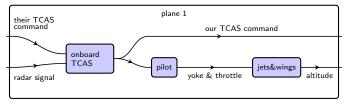
¹Traffic Collision Avoidance System.

Systems of interacting systems in the NAS

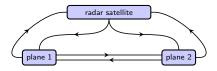


Systems of interacting systems in the NAS



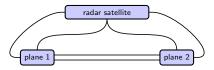


A hypergraph category



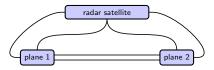
- What are these pictures?
 - Wires with arrows indicate "signal passing".

A hypergraph category

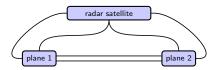


- What are these pictures?
 - Wires with arrows indicate "signal passing".
 - Drop the arrows for "variable sharing" perspective (Willems)
 - Either way, the planes and the radars are *constraints*.
 - "If I know you're close below me, I'll move up".

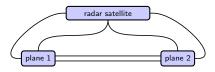
A hypergraph category



- What are these pictures?
 - Wires with arrows indicate "signal passing".
 - Drop the arrows for "variable sharing" perspective (Willems)
 - Either way, the planes and the radars are *constraints*.
 - "If I know you're close below me, I'll move up".
- What are these pictures formally?
 - Composition diagrams in a *hypergraph category*.
 - What we called "constraints" are formalized as relations.

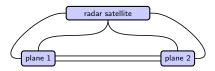


Relations form a hypergraph category in any topos \mathcal{E} .



Relations form a hypergraph category in any topos \mathcal{E} .

- Example: relations in $\mathcal{E} = \mathbf{Set}$.
- Idea generalizes to arbitrary toposes.
- Every topos ${\mathcal E}$ has a subobject classifier Ω
- Relations on $A = A_1 \times \cdots \times A_n$ are morphisms $A \to \Omega$.

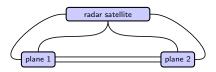


Relations form a hypergraph category in any topos \mathcal{E} .

- Example: relations in $\mathcal{E} = \mathbf{Set}$.
- Idea generalizes to arbitrary toposes.
- Every topos ${\mathcal E}$ has a subobject classifier Ω
- Relations on $A = A_1 \times \cdots \times A_n$ are morphisms $A \to \Omega$.

So... what's the topos for the National Airspace System?

More generally, where do all these behaviors live?



Relations form a hypergraph category in any topos \mathcal{E} .

- Example: relations in $\mathcal{E} = \mathbf{Set}$.
- Idea generalizes to arbitrary toposes.
- Every topos ${\mathcal E}$ has a subobject classifier Ω
- Relations on $A = A_1 \times \cdots \times A_n$ are morphisms $A \to \Omega$.

So... what's the topos for the National Airspace System?

- More generally, where do all these behaviors live?
- They live in time.
- Goal: a good topos for studying behaviors (hence time).

NAS use-case as guide

What's the topos for the National Airspace System?

- This question was a major guide for our work.
- Need to combine many common frameworks into a "big tent".
 - Differential equations, continuous dynamical systems.
 - Labeled transition systems, discrete dynamical systems.
 - Delays, non-instantaneous rules.
 - Determinism, non-determinism.

NAS use-case as guide

What's the topos for the National Airspace System?

- This question was a major guide for our work.
- Need to combine many common frameworks into a "big tent".
 - Differential equations, continuous dynamical systems.
 - Labeled transition systems, discrete dynamical systems.
 - Delays, non-instantaneous rules.
 - Determinism, non-determinism.
- Need a logic in which to prove safety of the combined system.
 - Currently, combination process takes place in engineers' heads.
 - For NextGen, we may need to do better.

NAS use-case as guide

What's the topos for the National Airspace System?

- This question was a major guide for our work.
- Need to combine many common frameworks into a "big tent".
 - Differential equations, continuous dynamical systems.
 - Labeled transition systems, discrete dynamical systems.
 - Delays, non-instantaneous rules.
 - Determinism, non-determinism.
- Need a logic in which to prove safety of the combined system.
 - Currently, combination process takes place in engineers' heads.
 - For NextGen, we may need to do better.

Relationship to toposes:

- Toposes have an associated internal language and logic.
- Can use formal methods (proof assistants) to prove properties of NAS.

Plan of the talk

- 1. Define a topos $\mathcal B$ of behavior types.
- 2. Briefly discuss *temporal type theory*, which is sound in \mathcal{B} .
- 3. Return to our NAS use-case.

Toposes—invented by Grothendieck—generalize topological spaces.

- Basic idea:
 - A topos tells you "what can live on a space" ...
 - ...rather than telling you "what the space *is*".
 - The space is just the habitat, or "site", where stuff appears.

Toposes—invented by Grothendieck—generalize topological spaces.

Basic idea:

- A topos tells you "what can live on a space" ...
- ...rather than telling you "what the space is".
- The space is just the habitat, or "site", where stuff appears.
- Definition: a *topos* is the category of sheaves on a site.
- Two examples: topological spaces and databases.
 - Any topological space defines a site.
 - What lives there: vector fields, scalar fields; "bundles" of stuff.

Toposes—invented by Grothendieck—generalize topological spaces.

Basic idea:

- A topos tells you "what can live on a space" ...
- ...rather than telling you "what the space is".
- The space is just the habitat, or "site", where stuff appears.
- Definition: a *topos* is the category of sheaves on a site.
- Two examples: topological spaces and databases.
 - Any topological space defines a site.
 - What lives there: vector fields, scalar fields; "bundles" of stuff.
 - Any database schema *S* defines a site.
 - What lives there: all states of the database (*S*-instances).

Toposes—invented by Grothendieck—generalize topological spaces.

Basic idea:

- A topos tells you "what can live on a space" ...
- ...rather than telling you "what the space is".
- The space is just the habitat, or "site", where stuff appears.
- Definition: a *topos* is the category of sheaves on a site.
- Two examples: topological spaces and databases.
 - Any topological space defines a site.
 - What lives there: vector fields, scalar fields; "bundles" of stuff.
 - Any database schema *S* defines a site.
 - What lives there: all states of the database (*S*-instances).

Question: What's a good site on which behaviors can live?

Toposes—invented by Grothendieck—generalize topological spaces.

Basic idea:

- A topos tells you "what can live on a space" ...
- ...rather than telling you "what the space is".
- The space is just the habitat, or "site", where stuff appears.
- Definition: a *topos* is the category of sheaves on a site.
- Two examples: topological spaces and databases.
 - Any topological space defines a site.
 - What lives there: vector fields, scalar fields; "bundles" of stuff.
 - Any database schema *S* defines a site.
 - What lives there: all states of the database (*S*-instances).

Question: What's a good site on which *behaviors* can live? Answer: roughly, Time. But what is that?

A first guess: the space ${\mathbb R}$ as the site for behaviors.

A first guess: the space \mathbb{R} as the site for behaviors.

- What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b)
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."

A first guess: the space \mathbb{R} as the site for behaviors.

- What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b)
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."
 - On morphisms:
 - For each $a \le a' < b' \le b$, a function $B(a, b) \rightarrow B(a', b')$
 - "The *B*-way to restrict *B*-behaviors over subintervals."

A first guess: the space \mathbb{R} as the site for behaviors.

- What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b)
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."

On morphisms:

- For each $a \le a' < b' \le b$, a function $B(a, b) \rightarrow B(a', b')$
- "The B-way to restrict B-behaviors over subintervals."

Gluing conditions:

- "Continuity": $B(a, b) = \lim_{a < a' < b' < b} B(a', b')$.
- "Composition": $B(a, b) = B(a, b') \times_{B(a', b')} B(a', b)$.

Choosing a topos

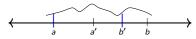
First guess: the space ${\mathbb R}$

- A first guess: the space ${\mathbb R}$ as the site for behaviors.
 - What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b)
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."
 - On morphisms:

• For each $a \le a' < b' \le b$, a function $B(a, b) \rightarrow B(a', b')$

- "The B-way to restrict B-behaviors over subintervals."
- Gluing conditions:
 - "Continuity": $B(a, b) = \lim_{a < a' < b' < b} B(a', b')$.

• "Composition": $B(a, b) = B(a, b') \times_{B(a', b')} B(a', b)$.



Choosing a topos

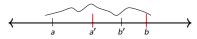
First guess: the space ${\mathbb R}$

- A first guess: the space ${\mathbb R}$ as the site for behaviors.
 - What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b)
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."
 - On morphisms:

• For each $a \le a' < b' \le b$, a function $B(a, b) \rightarrow B(a', b')$

- "The B-way to restrict B-behaviors over subintervals."
- Gluing conditions:
 - "Continuity": $B(a, b) = \lim_{a < a' < b' < b} B(a', b')$.

• "Composition": $B(a, b) = B(a, b') \times_{B(a', b')} B(a', b)$.



Choosing a topos

First guess: the space ${\mathbb R}$

- A first guess: the space ${\mathbb R}$ as the site for behaviors.
 - What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b)
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."
 - On morphisms:

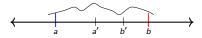
• For each $a \le a' < b' \le b$, a function $B(a, b) \rightarrow B(a', b')$

- "The B-way to restrict B-behaviors over subintervals."
- Gluing conditions:
 - "Continuity": $B(a, b) = \lim_{a < a' < b' < b} B(a', b')$.

• "Composition": $B(a, b) = B(a, b') \times_{B(a', b')} B(a', b)$.



- A first guess: the space ${\mathbb R}$ as the site for behaviors.
 - What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b)
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."
 - On morphisms:
 - For each $a \leq a' < b' \leq b$, a function $B(a, b) \rightarrow B(a', b')$
 - "The B-way to restrict B-behaviors over subintervals."
 - Gluing conditions:
 - "Continuity": $B(a, b) = \lim_{a < a' < b' < b} B(a', b')$.
 - "Composition": $B(a, b) = B(a, b') \times_{B(a', b')} B(a', b)$.



Two reasons *not to use* $Shv(\mathbb{R})$ as our topos.

- 1. Often want to consider **non-composable** behaviors!
 - "Roughly monotonic": $\forall (t_1, t_2). t_1 + 5 \le t_2 \implies f(t_1) \le f(t_2).$
 - "Don't move much": $\forall (t_1, t_2) 5 < f(t_1) f(t_2) < 5$.
 - Neither of these have the "composition gluing".

Two reasons *not to use* $Shv(\mathbb{R})$ as our topos.

- 1. Often want to consider **non-composable** behaviors!
 - "Roughly monotonic": $\forall (t_1, t_2). t_1 + 5 \le t_2 \implies f(t_1) \le f(t_2).$
 - "Don't move much": $\forall (t_1, t_2) 5 < f(t_1) f(t_2) < 5$.
 - Neither of these have the "composition gluing".
- 2. Want to compare behavior across different time windows.
 - Example: a delay is "the same behavior at different times."
 - Shv(\mathbb{R}) sees no relationship between B(0,3) and B(2,5).

Two reasons *not to use* $Shv(\mathbb{R})$ as our topos.

- 1. Often want to consider **non-composable** behaviors!
 - "Roughly monotonic": $\forall (t_1, t_2). t_1 + 5 \le t_2 \implies f(t_1) \le f(t_2).$
 - "Don't move much": $\forall (t_1, t_2) 5 < f(t_1) f(t_2) < 5$.
 - Neither of these have the "composition gluing".
- 2. Want to compare behavior across different time windows.
 - Example: a delay is "the same behavior at different times."
 - Shv(\mathbb{R}) sees no relationship between B(0,3) and B(2,5).
 - To fix this, replace interval (a, b) by duration b a.
 - "Translation invariance."

Two reasons *not to use* $Shv(\mathbb{R})$ as our topos.

- 1. Often want to consider **non-composable** behaviors!
 - "Roughly monotonic": $\forall (t_1, t_2). t_1 + 5 \le t_2 \implies f(t_1) \le f(t_2).$
 - "Don't move much": $\forall (t_1, t_2) 5 < f(t_1) f(t_2) < 5$.
 - Neither of these have the "composition gluing".
- 2. Want to compare behavior across different time windows.
 - Example: a delay is "the same behavior at different times."
 - Shv(\mathbb{R}) sees no relationship between B(0,3) and B(2,5).
 - To fix this, replace interval (a, b) by duration b a.
 - "Translation invariance."

Discard composition gluing, add translation invariance.

Our choice of topos ${\mathcal B}$

Use $\mathbb{IR}_{\triangleright}$ the following site:

• When
$$r, s > 0$$
, write $\ell' \rightsquigarrow \ell^2$.

The topos of behavior types: $\mathcal{B} = \text{Shv}(\mathbb{IR}_{/\triangleright})$.

 $^{^2}$ Johnstone-Joyal's notation in "Continuous categories and exponentiable toposes".

0

 ℓ'

Our choice of topos ${\mathcal B}$

Use $\mathbb{IR}_{\triangleright}$ the following site:

• Objects = $\{\ell \in \mathbb{R}_{\geq 0}\}$.

Hom
$$(\ell', \ell) = \{\langle r, s \rangle \mid r + \ell' + s = \ell\}$$

• Coverage
$$\{\langle r, s \rangle \colon \ell' \to \ell \mid r > 0, s > 0\}$$

The topos of behavior types: $\mathcal{B} = \text{Shv}(\mathbb{IR}_{/\triangleright})$.

- A sheaf X assigns a set of possible behaviors to each ℓ ,
- And a restriction map to each included subinterval $(r, s): \ell' \to \ell$,

Such that
$$X(\ell) \cong \lim_{\ell' \leadsto \ell} X(\ell')$$
.

²Johnstone-Joyal's notation in "Continuous categories and exponentiable toposes".

Type theory and toposes

Type theory is useful, e.g. in computer science. It's basically a bunch of language rules.

Type theory and toposes

Type theory is useful, e.g. in computer science.

- It's basically a bunch of language rules.
- E.g. simply-typed lambda calculus with sum types and quotient types.
 - Start with atomic types and atomic terms.
 - Build new types, terms, and propositions using constructors.
 - Types: N, Prop, products, arrows, sums, quotients.
 - Terms: tupling, projection, lambda abstraction, evaluation, etc.
 - Propositions: $\exists, \forall, \land, \lor, \neg, \Rightarrow, \Leftrightarrow, \top, \bot$.
 - Add axioms, which are logical statements.

Type theory and toposes

Type theory is useful, e.g. in computer science.

- It's basically a bunch of language rules.
- E.g. simply-typed lambda calculus with sum types and quotient types.
 - Start with atomic types and atomic terms.
 - Build new types, terms, and propositions using constructors.
 - Types: N, Prop, products, arrows, sums, quotients.
 - Terms: tupling, projection, lambda abstraction, evaluation, etc.
 - Propositions: $\exists, \forall, \land, \lor, \neg, \Rightarrow, \Leftrightarrow, \top, \bot$.
 - Add axioms, which are logical statements.

I thought this was dreadfully boring. Until I witnessed...

The Kripke-Joyal semantics

The Kripke-Joyal semantics is pretty neat.

- Start with atomic types, terms, and axioms from your topos.
- Kripke-Joyal is a machine that turns logic into topos-proofs.

The Kripke-Joyal semantics

The Kripke-Joyal semantics is pretty neat.

- Start with atomic types, terms, and axioms from your topos.
- Kripke-Joyal is a machine that turns logic into topos-proofs.
- Suppose you have any expression in the type theory.
 - It automatically has semantics in your topos.
 - That is, it means something about sheaves X.
 - \forall (*x* : *X*) "for all restriction maps and sections *x*…"
 - $\exists (x : X) -$ "there is a covering family and a section x in each..."
 - Each connective \land , \lor , \Rightarrow , means something sheafy.
- Statements and proofs are recursive, tree-like structures.
 - Kripke-Joyal recurses over that structure.
 - At each step, it unwinds the logic into restrictions, covers, sections.
 - It manages all the topos stuff and lets you believe you're in Set.

The Kripke-Joyal semantics: doing the heavy lifting.

Types in the topos $\ensuremath{\mathcal{B}}$

In this topos, you can study any sort of mathematical object

- You can study groups, topological spaces, databases, etc.
- There's only one caveat: everything occurs in time.

Types in the topos ${\mathcal B}$

In this topos, you can study any sort of mathematical object

- You can study groups, topological spaces, databases, etc.
- There's only one caveat: everything occurs in time.
 - A group object in this topos is a group that can change in time.
 - A database schema is one that can change in time.

Types in the topos ${\mathcal B}$

In this topos, you can study any sort of mathematical object

- You can study groups, topological spaces, databases, etc.
- There's only one caveat: everything occurs in time.
 - A group object in this topos is a group that can change in time.
 - A database schema is one that can change in time.
- There is a type \mathbb{R}_{var} of real numbers that change continuously in time.
 - It is a topological ring object just like real numbers always are.
 - Define temporal derivatives, rate of change through time, within the logic.
 - We prove logically that it satisfies the usual rules (linear, Leibniz)
 - And we check semantically that it actually is the derivative.

Differential equations

As a logical expression, derivatives work like anything else. Consider a differential equation, like

 $f(\dot{x}, \ddot{x}, a, b) = 0.$

Differential equations

As a logical expression, derivatives work like anything else.

Consider a differential equation, like

$$f(\dot{x}, \ddot{x}, a, b) = 0.$$

- Maybe $a, b : \mathbb{R}_{var}$ are continuous functions of time.
- Regardless, $f(\dot{x}, \ddot{x}, a, b) = 0$ is just an equation in the logic.
 - Use it with $\top, \bot, \neg, \lor, \land, \Rightarrow, \exists, \forall$.
 - Can be combined with any other property.

The problem: safe altitude

Simplifying the safe separation problem.

- Real problem: safe separation for pairs of planes.
 - Components: Radars, pilots, thrusters/actuators.
 - Behavior types: Discrete signals, (continuous) diff-eqs, delays.

The problem: safe altitude

Simplifying the safe separation problem.

- Real problem: safe separation for pairs of planes.
 - Components: Radars, pilots, thrusters/actuators.
 - Behavior types: Discrete signals, (continuous) diff-eqs, delays.
- Simplification: safe altitude for one plane.
 - One radar, one pilot, one thruster.
 - Same behavior types: discrete, continuous, delay.

The problem: safe altitude

Simplifying the safe separation problem.

- Real problem: safe separation for pairs of planes.
 - Components: Radars, pilots, thrusters/actuators.
 - Behavior types: Discrete signals, (continuous) diff-eqs, delays.
- Simplification: safe altitude for one plane.
 - One radar, one pilot, one thruster.
 - Same behavior types: discrete, continuous, delay.

Goal: combine disparate guarantees to prove useful result.

Setup

Variables to be used, and their types:

t: Time. T, P: Cmnd. a: \mathbb{R}_{π} . safe, margin, del, rate : \mathbb{Q} .

What these mean:

t: Time.	time-line	(a clock).
$\blacksquare a : \mathbb{R}_{var}.$	altitude	(continuously changing).
■ <i>T</i> : Cmnd.	TCAS command	(occurs at discrete instants).
■ <i>P</i> : Cmnd.	pilot's command	(occurs at discrete instants).
∎ safe∶ℚ.	safe altitude	(constant).
🗖 margin:Q.	margin-of-error	(constant).
∎ del : ℚ.	pilot delay	(constant).
🗖 rate: Q.	maximal ascent rate	(constant).

t: Time.	time-line	(a clock).
a : R _{var} .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe: Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del : Q.	pilot delay	(constant).
rate: Q.	maximal ascent rate	(constant).

$$\Theta_1 \coloneqq (\texttt{margin} > 0) \land (a \ge 0).$$

t:Time.	time-line	(a clock).
a : R _{var} .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe: Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del: Q.	pilot delay	(constant).
rate : Q.	maximal ascent rate	(constant).

$$\begin{array}{l} \theta_1 \coloneqq (\operatorname{margin} > 0) \land (a \ge 0). \\ \theta_2 \coloneqq (a > \operatorname{safe} + \operatorname{margin} \Longrightarrow T = \operatorname{level}). \\ \theta_2' \coloneqq (a < \operatorname{safe} + \operatorname{margin} \Longrightarrow T = \operatorname{climb}). \end{array}$$

t:Time.	time-line	(a clock).
a : R _{var} .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe: Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del : Q.	pilot delay	(constant).
rate : Q.	maximal ascent rate	(constant).

$$\begin{array}{l} \theta_1 \coloneqq (\mathrm{margin} > 0) \land (a \ge 0). \\ \theta_2 \coloneqq (a > \mathrm{safe} + \mathrm{margin} \Rightarrow T = \mathrm{level}). \\ \theta_2' \coloneqq (a < \mathrm{safe} + \mathrm{margin} \Rightarrow T = \mathrm{climb}). \\ \theta_3 \coloneqq (P = \mathrm{level} \Rightarrow \dot{a} = 0) \land (P = \mathrm{climb} \Rightarrow \dot{a} = \mathrm{rate}). \end{array}$$

■ t:Time.	time-line	(a clock).
a : R _{var} .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe: Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del: Q.	pilot delay	(constant).
rate : Q.	maximal ascent rate	(constant).

$$\begin{array}{l} \theta_1\coloneqq (\mathrm{margin}>0)\wedge(a\geq 0).\\ \theta_2\coloneqq (a>\mathrm{safe}+\mathrm{margin}\Rightarrow T=\mathrm{level}).\\ \theta_2'\coloneqq (a<\mathrm{safe}+\mathrm{margin}\Rightarrow T=\mathrm{climb}).\\ \theta_3\coloneqq (P=\mathrm{level}\Rightarrow\dot{a}=0)\wedge(P=\mathrm{climb}\Rightarrow\dot{a}=\mathrm{rate}).\\ \theta_4\coloneqq \mathrm{is_delayed}(\mathrm{del},T,P). \end{array}$$

 θ_4 is an abbreviation for a longer logical condition.

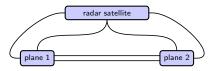
t: Time.	time-line	(a clock).
a : R _{var} .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe: Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del: Q.	pilot delay	(constant).
rate: Q.	maximal ascent rate	(constant).

$$\begin{array}{l} \theta_1\coloneqq (\mathrm{margin}>0)\wedge(a\geq 0).\\ \theta_2\coloneqq (a>\mathrm{safe}+\mathrm{margin}\Rightarrow T=\mathrm{level}).\\ \theta_2'\coloneqq (a<\mathrm{safe}+\mathrm{margin}\Rightarrow T=\mathrm{climb}).\\ \theta_3\coloneqq (P=\mathrm{level}\Rightarrow\dot{a}=0)\wedge(P=\mathrm{climb}\Rightarrow\dot{a}=\mathrm{rate}).\\ \theta_4\coloneqq \mathrm{is_delayed}(\mathrm{del},T,P). \end{array}$$

 θ_4 is an abbreviation for a longer logical condition.

■ Can prove safe separation

$$\forall (t: Time). \downarrow_0^t (t > del + \frac{safe}{rate} \implies a \ge safe).$$



- Idea: topos theory for integrating systems in a big tent.
- Many different formalisms for behavior, but they all occur in time.
 - We say that time occurs in intervals, which can be restricted.
 - Sheaves are behavior types: what can occur over intervals.
- The topos has a native "internal" logic.
 - Looks like usual set theory, \forall , \exists , \land , \lor , \Rightarrow , \neg ; use formal methods
 - It compiles via Kripke-Joyal into complex facts about sheaves.

This temporal type theory is quite general, and fully compositional.

If you're interested in reading more

Book (to be published by Springer).

- Temporal Type Theory.
- Freely available: https://arxiv.org/abs/1710.10258
- Very technical.

If you're interested in reading more

Book (to be published by Springer).

- Temporal Type Theory.
- Freely available: https://arxiv.org/abs/1710.10258
- Very technical.
- Book (hopefully to be published by MIT Press).
 - Seven Sketches in Compositionality.
 - Freely available: https://arxiv.org/abs/1803.05316
 - Friendly! Chapter 7 is about this material.

If you're interested in reading more

Book (to be published by Springer).

- Temporal Type Theory.
- Freely available: https://arxiv.org/abs/1710.10258
- Very technical.
- Book (hopefully to be published by MIT Press).
 - Seven Sketches in Compositionality.
 - Freely available: https://arxiv.org/abs/1803.05316
 - Friendly! Chapter 7 is about this material.

Questions and comments are welcome. Thanks!