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Introduction The National Airspace System

An example system

The National Airspace System (NAS).
Goals of NextGen:

Double the number of airplanes in the sky;
Remain extremely safe.

Safe separation problem:
Planes need to remain at a safe distance.
Can’t generally communicate directly.
Use radars, pilots, ground control, radios, and TCAS.1

Systems of systems:
A great variety of interconnected systems.
Work in concert to enforce global property: safe separation.

1Traffic Collision Avoidance System.
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Introduction The National Airspace System

Systems of interacting systems in the NAS

plane 1 plane 2

radar satellite

National Airspace System
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Introduction Relations in a topos

A hypergraph category

plane 1 plane 2

radar satellite

What are these pictures?
Wires with arrows indicate “signal passing”.

Drop the arrows for “variable sharing” perspective (Willems)
Either way, the planes and the radars are constraints.
“If I know you’re close below me, I’ll move up”.

What are these pictures formally?
Composition diagrams in a hypergraph category.
What we called “constraints” are formalized as relations.

3 / 19
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Introduction Relations in a topos

Relations in a topos

plane 1 plane 2

radar satellite

Relations form a hypergraph category in any topos E.

Example: relations in E � Set.
Idea generalizes to arbitrary toposes.
Every topos E has a subobject classifier Ω
Relations on A � A1 × · · · × An are morphisms A→ Ω.

So... what’s the topos for the National Airspace System?
More generally, where do all these behaviors live?
They live in time.
Goal: a good topos for studying behaviors (hence time).

4 / 19
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Introduction Summary: motivation and plan

NAS use-case as guide

What’s the topos for the National Airspace System?
This question was a major guide for our work.
Need to combine many common frameworks into a “big tent”.

Differential equations, continuous dynamical systems.
Labeled transition systems, discrete dynamical systems.
Delays, non-instantaneous rules.
Determinism, non-determinism.

Need a logic in which to prove safety of the combined system.
Currently, combination process takes place in engineers’ heads.
For NextGen, we may need to do better.

Relationship to toposes:
Toposes have an associated internal language and logic.
Can use formal methods (proof assistants) to prove properties of NAS.
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Introduction Summary: motivation and plan

Plan of the talk

1. Define a topos B of behavior types.

2. Briefly discuss temporal type theory, which is sound in B.

3. Return to our NAS use-case.
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The topos B of behavior types Choosing a topos

What is a topos and why?

Toposes—invented by Grothendieck—generalize topological spaces.
Basic idea:

A topos tells you “what can live on a space”...
...rather than telling you “what the space is ”.
The space is just the habitat, or “site”, where stuff appears.

Definition: a topos is the category of sheaves on a site.
Two examples: topological spaces and databases.

Any topological space defines a site.
What lives there: vector fields, scalar fields; “bundles” of stuff.

Any database schema S defines a site.
What lives there: all states of the database (S-instances).

Question: What’s a good site on which behaviors can live?
Answer: roughly, Time. But what is that?
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The topos B of behavior types Choosing a topos

First guess: the space R

A first guess: the space R as the site for behaviors.

What would a behavior type B ∈ Shv(R) be?
On objects:

For each open interval (a, b) ⊆ R, a set B(a, b)
“The set of B-behaviors that can occur on (a, b).”

On morphisms:
For each a ≤ a′ < b′ ≤ b, a function B(a, b) → B(a′, b′)
“The B-way to restrict B-behaviors over subintervals.”

Gluing conditions:
“Continuity”: B(a, b) � lima<a′<b′<b B(a′, b′).
“Composition”: B(a, b) � B(a, b′) ×B(a′,b′) B(a′, b).
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The topos B of behavior types Choosing a topos

Why R is not preferable as the site

Two reasons not to use Shv(R) as our topos.
1. Often want to consider non-composable behaviors!

“Roughly monotonic”: ∀(t1 , t2). t1 + 5 ≤ t2 ⇒ f (t1) ≤ f (t2).
“Don’t move much”: ∀(t1 , t2).−5 < f (t1) − f (t2) < 5.
Neither of these have the “composition gluing”.

2. Want to compare behavior across different time windows.
Example: a delay is “the same behavior at different times.”
Shv(R) sees no relationship between B(0, 3) and B(2, 5).
To fix this, replace interval (a, b) by duration b − a.
“Translation invariance.”

Discard composition gluing, add translation invariance.

9 / 19



The topos B of behavior types Choosing a topos

Why R is not preferable as the site

Two reasons not to use Shv(R) as our topos.
1. Often want to consider non-composable behaviors!

“Roughly monotonic”: ∀(t1 , t2). t1 + 5 ≤ t2 ⇒ f (t1) ≤ f (t2).
“Don’t move much”: ∀(t1 , t2).−5 < f (t1) − f (t2) < 5.
Neither of these have the “composition gluing”.

2. Want to compare behavior across different time windows.
Example: a delay is “the same behavior at different times.”
Shv(R) sees no relationship between B(0, 3) and B(2, 5).

To fix this, replace interval (a, b) by duration b − a.
“Translation invariance.”

Discard composition gluing, add translation invariance.

9 / 19



The topos B of behavior types Choosing a topos

Why R is not preferable as the site

Two reasons not to use Shv(R) as our topos.
1. Often want to consider non-composable behaviors!

“Roughly monotonic”: ∀(t1 , t2). t1 + 5 ≤ t2 ⇒ f (t1) ≤ f (t2).
“Don’t move much”: ∀(t1 , t2).−5 < f (t1) − f (t2) < 5.
Neither of these have the “composition gluing”.

2. Want to compare behavior across different time windows.
Example: a delay is “the same behavior at different times.”
Shv(R) sees no relationship between B(0, 3) and B(2, 5).
To fix this, replace interval (a, b) by duration b − a.
“Translation invariance.”

Discard composition gluing, add translation invariance.

9 / 19



The topos B of behavior types Choosing a topos

Why R is not preferable as the site

Two reasons not to use Shv(R) as our topos.
1. Often want to consider non-composable behaviors!

“Roughly monotonic”: ∀(t1 , t2). t1 + 5 ≤ t2 ⇒ f (t1) ≤ f (t2).
“Don’t move much”: ∀(t1 , t2).−5 < f (t1) − f (t2) < 5.
Neither of these have the “composition gluing”.

2. Want to compare behavior across different time windows.
Example: a delay is “the same behavior at different times.”
Shv(R) sees no relationship between B(0, 3) and B(2, 5).
To fix this, replace interval (a, b) by duration b − a.
“Translation invariance.”

Discard composition gluing, add translation invariance.

9 / 19



The topos B of behavior types Choosing a topos

Our choice of topos B

Use IR/B the following site:
Objects = {` ∈ R≥0}.
Hom(`′, `) � {〈r , s〉 | r + `′ + s � `} | | | |

0 r ` − s

0 `′

`

Coverage {〈r , s〉 : `′→ ` | r > 0, s > 0}.
When r , s > 0, write `′ `.2

The topos of behavior types: B � Shv(IR/B).

A sheaf X assigns a set of possible behaviors to each `,
And a restriction map to each included subinterval 〈r , s〉 : `′→ `,
Such that X (`) � lim`′ ` X (`′).

2Johnstone-Joyal’s notation in “Continuous categories and exponentiable toposes”.
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Temporal type theory Toposes, type theory, and logic

Type theory and toposes

Type theory is useful, e.g. in computer science.
It’s basically a bunch of language rules.

E.g. simply-typed lambda calculus with sum types and quotient types.
Start with atomic types and atomic terms.
Build new types, terms, and propositions using constructors.

Types: N , Prop, products, arrows, sums, quotients.
Terms: tupling, projection, lambda abstraction, evaluation, etc.
Propositions: ∃, ∀,∧,∨,¬,⇒,⇔,>,⊥.

Add axioms, which are logical statements.

I thought this was dreadfully boring. Until I witnessed...
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Temporal type theory Toposes, type theory, and logic

The Kripke-Joyal semantics

The Kripke-Joyal semantics is pretty neat.
Start with atomic types, terms, and axioms from your topos.
Kripke-Joyal is a machine that turns logic into topos-proofs.

Suppose you have any expression in the type theory.
It automatically has semantics in your topos.
That is, it means something about sheaves X .
∀(x : X ) – “for all restriction maps and sections x ...”
∃(x : X ) – “there is a covering family and a section x in each...”
Each connective ∧,∨,⇒, means something sheafy.

Statements and proofs are recursive, tree-like structures.
Kripke-Joyal recurses over that structure.
At each step, it unwinds the logic into restrictions, covers, sections.
It manages all the topos stuff and lets you believe you’re in Set.

The Kripke-Joyal semantics: doing the heavy lifting.

12 / 19



Temporal type theory Toposes, type theory, and logic

The Kripke-Joyal semantics

The Kripke-Joyal semantics is pretty neat.
Start with atomic types, terms, and axioms from your topos.
Kripke-Joyal is a machine that turns logic into topos-proofs.
Suppose you have any expression in the type theory.

It automatically has semantics in your topos.
That is, it means something about sheaves X .
∀(x : X ) – “for all restriction maps and sections x ...”
∃(x : X ) – “there is a covering family and a section x in each...”
Each connective ∧,∨,⇒, means something sheafy.

Statements and proofs are recursive, tree-like structures.
Kripke-Joyal recurses over that structure.
At each step, it unwinds the logic into restrictions, covers, sections.
It manages all the topos stuff and lets you believe you’re in Set.

The Kripke-Joyal semantics: doing the heavy lifting.

12 / 19



Temporal type theory Toposes, type theory, and logic

Types in the topos B

In this topos, you can study any sort of mathematical object
You can study groups, topological spaces, databases, etc.
There’s only one caveat: everything occurs in time.

A group object in this topos is a group that can change in time.
A database schema is one that can change in time.

There is a type Rvar of real numbers that change continuously in time.
It is a topological ring object just like real numbers always are.
Define temporal derivatives, rate of change through time, within
the logic.
We prove logically that it satisfies the usual rules (linear, Leibniz)
And we check semantically that it actually is the derivative.

13 / 19
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And we check semantically that it actually is the derivative.
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Temporal type theory Toposes, type theory, and logic

Differential equations

As a logical expression, derivatives work like anything else.
Consider a differential equation, like

f (Ûx , Üx , a, b) � 0.

Maybe a, b : Rvar are continuous functions of time.
Regardless, f (Ûx , Üx , a, b) � 0 is just an equation in the logic.

Use it with >,⊥,¬,∨,∧,⇒, ∃, ∀.
Can be combined with any other property.
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Application to the NAS A simplified case

The problem: safe altitude

Simplifying the safe separation problem.
Real problem: safe separation for pairs of planes.

Components: Radars, pilots, thrusters/actuators.
Behavior types: Discrete signals, (continuous) diff-eqs, delays.

Simplification: safe altitude for one plane.
One radar, one pilot, one thruster.
Same behavior types: discrete, continuous, delay.

Goal: combine disparate guarantees to prove useful result.
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Application to the NAS A simplified case

Setup

Variables to be used, and their types:

t : Time. T ,P : Cmnd. a : Rπ . safe, margin, del, rate : Q .

What these mean:

t : Time. time-line (a clock).
a : Rvar. altitude (continuously changing).

T : Cmnd. TCAS command (occurs at discrete instants).

P : Cmnd. pilot’s command (occurs at discrete instants).
safe : Q . safe altitude (constant).
margin : Q . margin-of-error (constant).
del : Q . pilot delay (constant).
rate : Q . maximal ascent rate (constant).
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Application to the NAS A simplified case

Behavior contracts

t : Time. time-line (a clock).
a : R var. altitude (continuously changing).
T : Cmnd. TCAS command (occurs at discrete instants).
P : Cmnd. pilot’s command (occurs at discrete instants).
safe : Q . safe altitude (constant).
margin : Q . margin-of-error (constant).
del : Q . pilot delay (constant).
rate : Q . maximal ascent rate (constant).

θ1 B (margin > 0) ∧ (a ≥ 0).

θ2 B (a > safe + margin⇒ T � level).
θ′2 B (a < safe + margin⇒ T � climb).
θ3 B (P � level⇒ Ûa � 0) ∧ (P � climb⇒ Ûa � rate).
θ4 B is delayed(del,T ,P).

θ4 is an abbreviation for a longer logical condition.

Can prove safe separation

∀(t : Time). ↓t0(t > del +
safe

rate
⇒ a ≥ safe).
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Conclusion Summary

Summary

plane 1 plane 2

radar satellite

Idea: topos theory for integrating systems in a big tent.
Many different formalisms for behavior, but they all occur in time.

We say that time occurs in intervals, which can be restricted.
Sheaves are behavior types: what can occur over intervals.

The topos has a native “internal” logic.
Looks like usual set theory, ∀, ∃,∧,∨,⇒,¬; use formal methods
It compiles via Kripke-Joyal into complex facts about sheaves.

This temporal type theory is quite general, and fully compositional.
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Conclusion Summary

If you’re interested in reading more

Book (to be published by Springer).
Temporal Type Theory.
Freely available: https://arxiv.org/abs/1710.10258

Very technical.

Book (hopefully to be published by MIT Press).
Seven Sketches in Compositionality.
Freely available: https://arxiv.org/abs/1803.05316

Friendly! Chapter 7 is about this material.

Questions and comments are welcome. Thanks!
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