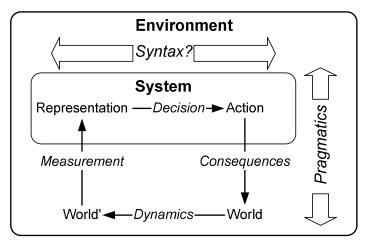


Seeking a Categorical Systems Theory via the Category of Hypergraphs

CLIFF JOSLYN, EMILIE PURVINE MICHAEL ROBINSON

NIST Workshop on Applied Category Theory: Bridging Theory and Practice March 15-16, 2018 PNNL-SA-133059

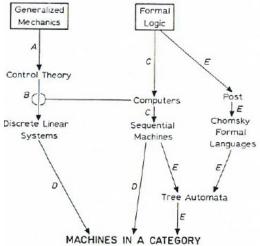



Mathematical Systems Theory

- Intellectual Tradition: Complex systems, general systems theory, systems science, cybernetics, semiotics
- Interdisciplinary models of <u>evolving</u>, <u>hierarchical</u>, <u>semiotic information</u> <u>control systems</u>:
 - Physics, biology, ecology, neurology, economics, robotics, socio-technical
- Classes of formal models: Interrelation, translation, integration
- Philosophical affinity with universal modeling frameworks
 - Automata Theory: Arbib, Eilenberg, Zeigler
 - **Logic and CS formalisms:** UML, FOL
 - Formal Ontologies: OWL, Conceptual Graphs (Sowa)

Mathematics: <u>Category theory</u>

Modeling Relation

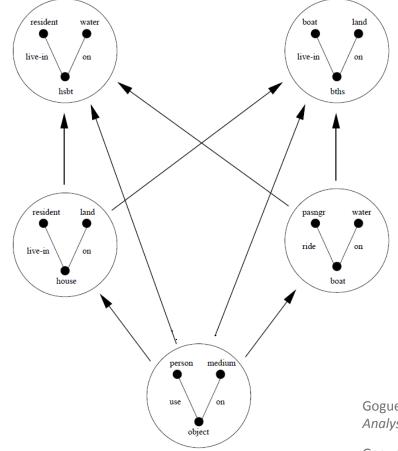

Control Relation


Category Theory Historical in Systems Science

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Ballelle Since 1965

A CATEGORY-THEORETIC APPROACH TO SYSTEMS IN A FUZZY WORLD*

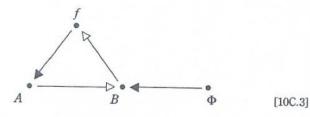
MICHAEL A. ARBIB AND ERNEST G. MANES (1977) in: Systems: Approaches, Theories, Applications, ed. WE Hartnett, pp. 1-26, D. Reidel


Mesarovic, MD and Takahara, Y: (1988) Abstract Systems Theory, Springer-Verlag

Takahara, Y and Takai, T: (1985) "Category Theoretical Framework of General Systems", Int. J. General Systems, 11:1, pp. 1-33

Resconi, Germano and Jessel, Maurice: (1986) "General System Logical Theory", Int. J. General Systems, v. 12, pp. 159-1282018 | 3

Approaches to Categorical Semiotics


LIFE ITSELF

A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life

Rosen, Robert: (1991) Life Itself, Columbia U Press, New York

250

Life Itself: The Preliminary Steps

which we can correspondingly abbreviate as

 $A \xrightarrow{f} B \xrightarrow{\Phi} H(A, B).$ [10C.4]

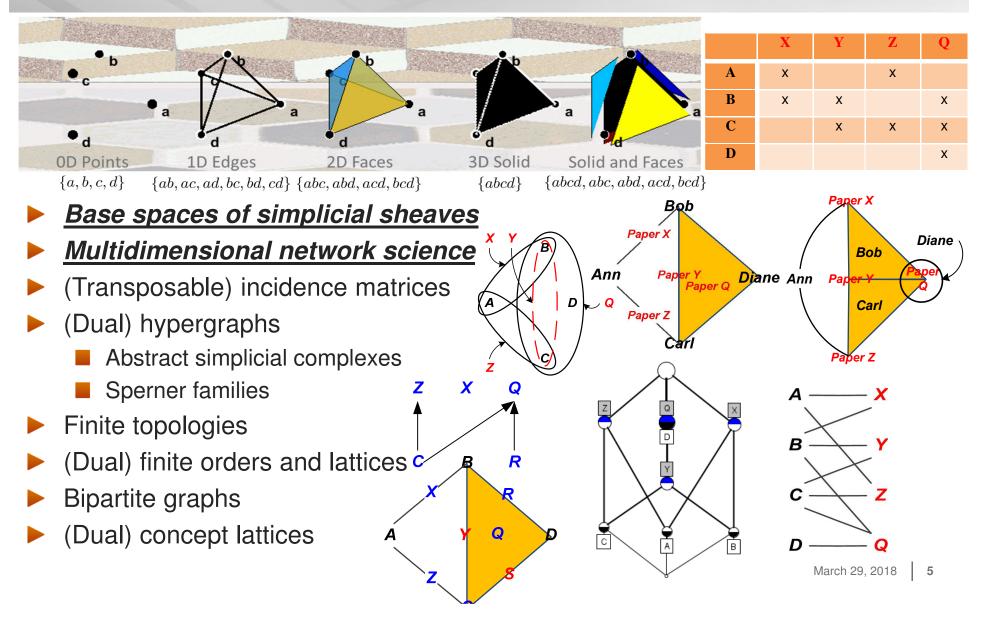
Goguen, JA: (1967) "L-fuzzy Sets", *J. Math. Analysis and Appl.*, 18, pp. 145-174

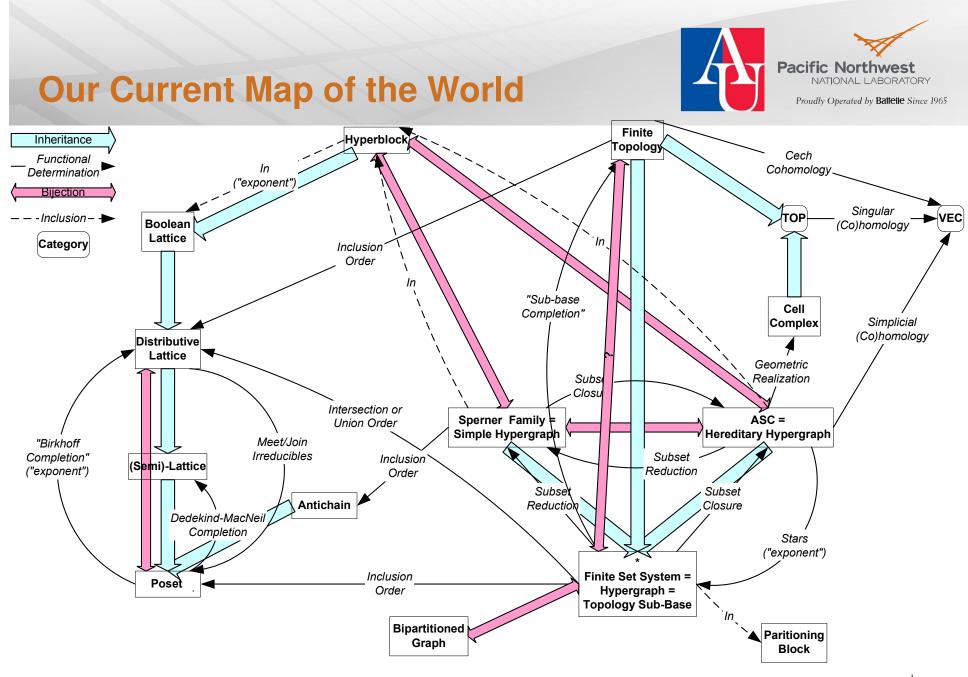
Goguen, JA: (1991) "A Categorical Manifesto", Mathematical Structures in Computer Science, 1:1,

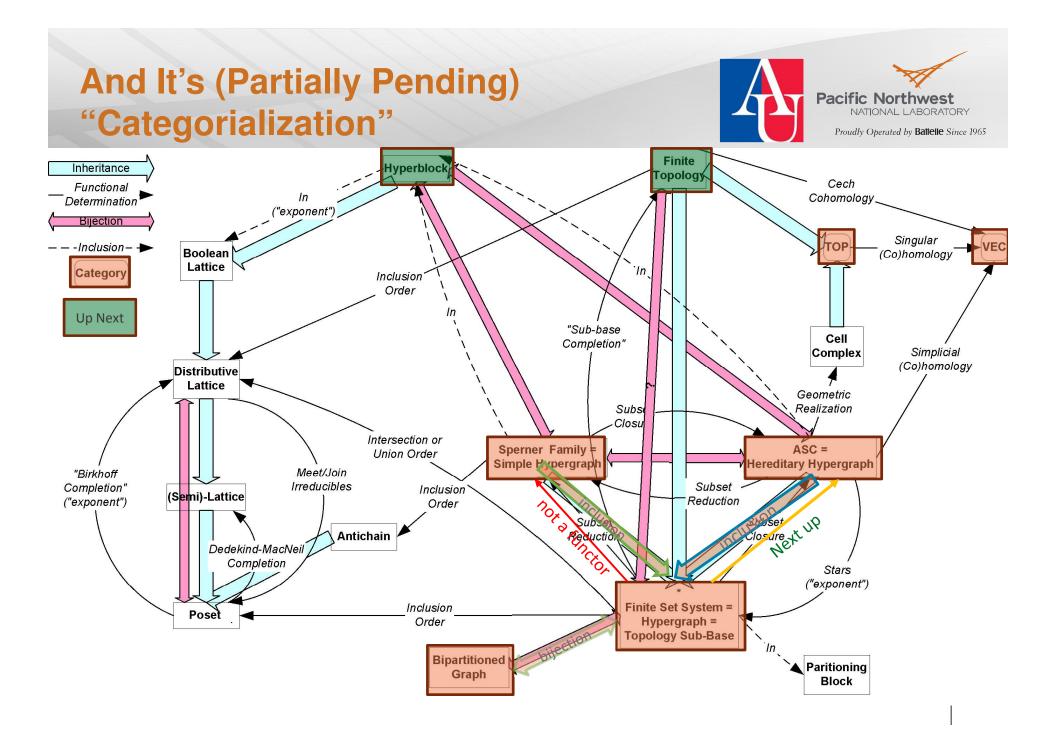
pp. 49-67

Goguen, JA: (1992) "Sheaf Semantics for Concurrent Interacting Objects", *Math. Structures in Computer Science*, 2:2, pp. 145-174

Figure 6: Two Different Blends of Two Input Spaces


Goguen, JA: (1999) "An Introduction to Algebraic Semiotics, with Application to User Interface Design", in: *Computation for Metaphor, Analogy and Agents, LNAI*, 1562, ed. Chrystopher Nehaniv, pp. 242-291


Years Later: Complex Systems Modeling With Finite Set Systems


Pacific Northwest

Proudly Operated by Battelle Since 1965

March 29, 2018 6

Concrete Question

- Hypergraphs for Community Interaction Analytics
 - **Collaboration hypernetworks:** Email, proteomics, cyber, neurology

Question from our sponsor: <u>Why hypergraphs?</u>

- Why not just do bipartite graph analysis?
- (How) Are the categories of finite hypergraphs, bipartite graphs, and Boolean matrices "equivalent"?
- Answer: It depends on definitions and cases (of course):
 - Isolated vertices
 - Self-loops
 - Multi-edges
 - Empty hyperedges
 - Empty hypergraphs
 - And apparently, especially: *Preservation of duality*
 - Subgraph isomorphism is the stock in trade graph analytics
 - Shouldn't sub-hypergraph isomorphism then also be for hypergraph analytics?
 - But: Then duality is violated!

Category of Hypergraphs

- Objects: Let $\mathcal{H} = (V, E, f)$ where V is a set of vertices, E is a set of edges, and $f : E \to 2^V$ maps each edge to its set of vertices. We require that $V \cap E = \emptyset$. We call such an \mathcal{H} a hypergraph.
- Arrows: Let $\mathcal{H}_1 = (V_1, E_1, f_1)$ and $\mathcal{H}_2 = (V_2, E_2, f_2)$ be two hypergraphs. A hypergraph homomorphism is a pair of set morphisms, $h_V : V_1 \to V_2$, $h_E : E_1 \to E_2$, such that the following diagram commutes: Dörfler, W., and D. A. Waller. "A category-

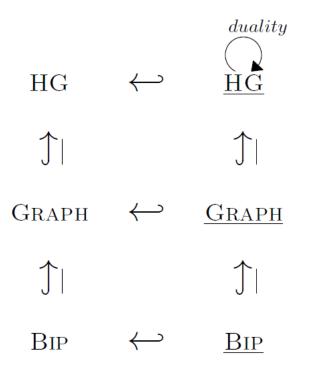
Idea: A vertex map that carries the edges around with it. • Inclusion map (subhypergraph) • Isomorphisms • Collapsing vertices and edges Example: f_1 theoretical approach to hypergraphs." h_E f_1 f_1 Archiv der Mathematik 34.1 (1980): 185-192. h_E f_2 $P(h_V)$ $E_2 \longrightarrow 2^{V_2}$ f_2 f_2 f_2 f_2 f_2 f_2 f_2 f_2 f_2 h_V : $f_1 \longrightarrow 2^{V_1}$ $f_2 \longrightarrow 2^{V_2}$ $f_2 \longrightarrow 2^{V_2}$

Subcategories and Duality

- GRAPH is a subcategory of HG
- ▶ BIP (= Bipartite graphs) is a subcategory of GRAPH
- Desire:
 - Duality of hypergraph is a functor from HG to itself
 - Let $d: \mathrm{HG} \to \mathrm{HG}$ be defined as follows:

where $f^*: V \to 2^E$, $f^*(v) = \{e \in E : v \in f(e)\}$, and $d((h_V, h_E)) = (h_E, h_V)$ BIP

Problem: d(h_V, h_E) is not always a morphism
■ Example: H₁ ⊂ H₂ and h_V, h_E are inclusion
Solution: Require morphisms to be *surjective*

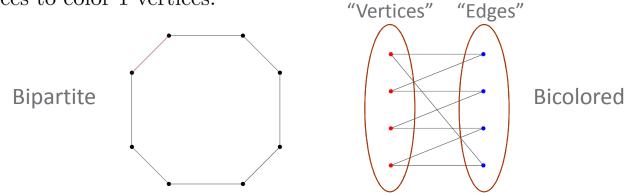

GRAPH

HG

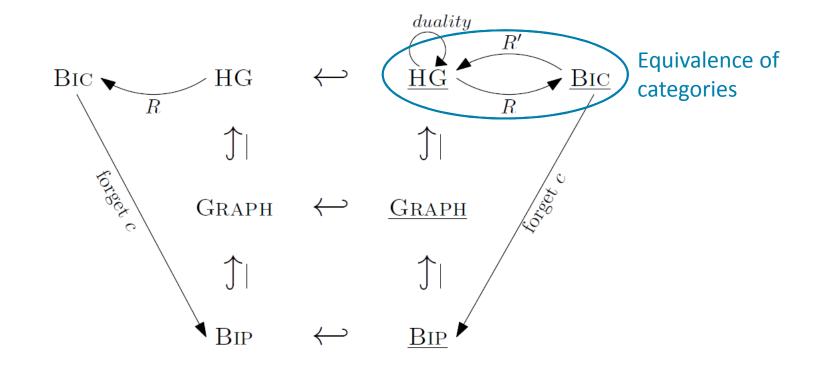
ſ

Require all morphisms to be surjective in HG, GRAPH, BIP

Bicolored graphs


Bicolored graph = Bipartite graph with a 2-coloring specified

Objects: A bicolored graph is a triple (V, E, c), where c is a bicoloring of G = (V, E).


Arrows: Given $G_1 = (V_1, E_1, c_1)$ and $G_2 = (V_2, E_2, c_2)$, two bicolored graphs, a surjective) bicolored graph homomorphism is a (surjective) graph homomorphism, $h: V_1 \to V_2$, such that

$$c_1^{-1}(0) = h^{-1}(c_2^{-1}(0)), \qquad c_1^{-1}(1) = h^{-1}(c_2^{-1}(1)).$$

In other words, h must map color 0 vertices to color 0 vertices, and color 1 vertices to color 1 vertices.

