Data Structures for Network Languages Brendan Fong (MIT)

Category Theory Workshop NIST 15 March 2018

Backprop as Functor Brendan Fong (MIT), with David Spivak and Rémy Tuyéras

We'll call these hypergraph categories.

A data structure problem.

To specify a hypergraph category:

- (i) list all systems f, g etc.
- (ii) list the composition rule: for **all** systems arranged in **all** possible networks name the composite system.

A data structure problem.

To specify a hypergraph category:

- (i) list all systems f, g etc.
- (ii) list the composition rule: for **all** systems arranged in **all** possible networks name the composite system.

then check this data coheres.

This corresponds to taking the *colimit* of {white \circ } \xrightarrow{f} {black \bullet }

To specify a **decorated cospan** hypergraph category:

- (i) list all systems f, g etc.
- (ii) list how systems interact with functions.

then check this data forms a lax monoidal functor.

Universal constructions (colimits; a left Kan extension) take care of the rest.

For details, http://brendanfong.com/:

Decorated Cospans

Decorated Corelations

The Algebra of Open and Interconnected Systems

Seven Sketches in Compositionality

arXiv.org > math > arXiv:1803.05316

Mathematics > Category Theory

Seven Sketches in Compositionality: An Invitation to Applied Category Theory

Brendan Fong, David I Spivak (Submitted on 14 Mar 2018)

Chapters:

- 1. Generative effects: Posets and adjunctions
- 2. Resources: Monoidal posets and enrichment
- 3. Databases: Categories, functors, and universal constructions
- 4. Co-design: Profunctors and monoidal categories
- 5. Signal flow graphs: Props, presentations, and proofs
- 6. Circuits: Hypergraph categories and operads
- 7. Logic of behavior: Sheaves, toposes, and languages