Data Structures for Network Languages
Brendan Fong (MIT)

Category Theory Workshop
NIST
15 March 2018
Backprop as Functor
Brendan Fong (MIT), with David Spivak and Rémy Tuyéras

Figure 2. A request function allows an update function to be defined for the composite $J(q, I(p, -))$.
We'll call these hypergraph categories.
We’ll call these hypergraph categories.
A data structure problem.

To specify a hypergraph category:

(i) list all systems f, g etc.

(ii) list the composition rule: for all systems arranged in all possible networks name the composite system.
A data structure problem.

To specify a hypergraph category:

(i) list all systems \(f, g \) etc.

(ii) list the composition rule: for all systems arranged in all possible networks name the composite system.

then check this data coheres.
This corresponds to taking the \textit{colimit} of \{white \circ\} \xrightarrow{f} \xrightarrow{g} \{black \bullet\}
To specify a **decorated cospan** hypergraph category:

(i) list all systems f, g etc.
(ii) list how systems interact with functions.

then check this data forms a lax monoidal functor.

Universal constructions (colimits; a left Kan extension) take care of the rest.
For details, http://brendanfong.com/:

Decorated Cospans
Decorated Corelations
The Algebra of Open and Interconnected Systems
Seven Sketches in Compositionality
Chapters:

1. Generative effects: Posets and adjunctions
2. Resources: Monoidal posets and enrichment
3. Databases: Categories, functors, and universal constructions
4. Co-design: Profunctors and monoidal categories
5. Signal flow graphs: Props, presentations, and proofs
6. Circuits: Hypergraph categories and operads
7. Logic of behavior: Sheaves, toposes, and languages