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Opportunities for Computational Category Theory

Sketch theory as a complement to other semantic technologies
Modularity and compositionality
Knowledge alignment, theory of a sketch, and Carmody-Walters
Q-Trees as a reasoning engine
Automated inference of and use of context
Transformations between sketches, logical theories, and ontologies
Limitations of other technologies

Quantum computing
No improvement in exact calculation of products, equalizers, pullbacks or
coproducts in Setf
Exact calculation of coequalizers
Fast, approximate algorithms
Quantum algorithms in other categories

Uncertainty models
Assigning convex sets to logical formulae (i.e., the Eilenberg-Moore category
of the Lawvere-Čencov stochastic category)
Categories for other uncertainty models. Corresponding logics.
Transformations between uncertainty models
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Sketches: Historical Timeline

1943: Eilenberg and Mac Lane introduce category theory

1958: Kan introduces the concept of adjoints

1963: Lawvere characterizes quantifiers and other logical operations as adjoints

1968: C. Ehresman introduces sketch theory

1985: KL-ONE — First implementation of a description logic system

1985: Barr and Wells publish Toposes, Triples and Theories

1989: J. W. Gray publishes Category of Sketches as a Model for Algebraic Semantics

1990: Barr and Wells publish Categories for Computing Science

1995: Carmody and Walters publish algorithm for computing left Kan extensions

1999: RDF becomes a W3C recommendation

2000: Johnson and Rosebrugh apply sketch data model to database interoperability

2000: DARPA begins development of DAML

2001: Dampney, Johnson and Rosebrugh apply sketches to view update problem

2001: W3C forms the Web-Ontology Working Group

2004: RDFS and OWL become W3C recommendations

2008: Johnson and Rosebrugh release Easik software

2009: OWL2 becomes a W3C recommendation

2012: Johnson, Rosebrugh and Wood use sketches to formulate lens concept of view
updates

www.bakermountain.org/talks/nist.pdf ralphw@bakermountain.org 29 September 2015 4/46

http://www.bakermountain.org/talks/nist.pdf


Introduction Sketches Alignment Logic Reasoning Translations Quantum Uncertainty

Knowledge Technologies

Facets of Knowledge Models

Storage Queries
Constraints Uncertainty
Alignment Dynamics
Context/Views Software
Reasoning Decision-Making
Translations Human Interface

Knowledge Technologies

• Mathematical Logic (1879)

• Databases + SQL (1968)

• Semantic Web OWL/RDF
+ Description Logic (1999)

• Sketches (1968/2000)
+ Q-Trees (1990)

Sketch Theory: Overview

• Mature, graph-based foundation
• Vertices = classes or relations
• Edges = type information or maps
• Constraints/meta-data specified

via graph maps (cones/cocones)
• Sketch maps respect constraints
• Grew from category theory in 1968
• Applied to data modeling since 1989

Sketch Theory: Strengths

• Visual/graphical modeling
• Modularity: data/concepts/uncertainty
• Combinatory algebra of sketches
• Concise graphical inference and
inter-convertibility with 1st order logic

• Derived concepts via CW algorithm
• Rich composable views/context
• Dynamics via sketch maps
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Opportunity: Limitations of Knowledge Technologies

Mathematical Logic

Computational complexity of some predicate calculus fragments (e.g.,
classical logic)
Complexity of the syntactic category used for knowledge alignment
Challenging to develop a human interface

Databases + SQL

Limited notion of context/view (a single table)
Static schema

Semantic Web OWL/RDF + Description Logic

Lack of modularity: meta-data, instance data and uncertainty
integrated into a monolithic ontology
Limited compositional algebra: (disjoint) unions of ontologies
Need for constraint-preserving maps

Sketch Theory

Meager computational infrastructure (e.g., relative to Jena)
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Sketch (G ,D,L, C)

All semantic constraints in a sketch are expressed using graph maps.

A sketch (G ,D,L, C) consists of:

An underlying graph G

A set D of diagrams B → G

A set L of cones L → G

A set C of cocones C → G
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Categorical Semantics of Sketches

Vertices are interpreted as objects

Edges are interpreted as morphisms

Classes of constraints (cones and cocones) are distinguished by the
shapes of their base graphs.

Classes of sketches are distinguished by their classes of constraints.

Like logics and OWL species, these have different expressive powers.

Small sample of the sketch semantics landscape

Sketch Partial Stoch. Čencov Prob. 0 Dempster Fuzzy Convex
Class Set Func. Matrices Cat. Refl. Shafer Sets Sets

linear • • • • • • • •
Finite Limit • • × × × × • •

Finite Coproduct • • • • • • • •
Entity-Attribute • • × × × × • •

Mixed • • × × × × • •
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Sketch Maps and Model Maps

A sketch map S1 → S2 is a graph map
G1

// G2

that preserves all the constraints of S1.
B // G1

// G2

We use sketch maps to formulate the Alignment Problem.

Given models M1 and M2 of a sketch S, a model map M1 → M2 is a collection of
functions (one for each vertex V of G)

M1(V )
τv // M2(V )

that are consistent with the edges of G .

Example:

Resident

live in
��

M1(Resident)

M1(lives in)
��

τ // M2(Resident)

M2(lives in)
��

Village M1(Village) τ
// M2(Village)

J.W. Gray. The category of sketches as a model for algebraic semantics. 1989.
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Sketch Theory: Questions

EA sketch instance data (models) can be implemented using
relational database features such as foreign keys and triggers.

What technologies support management of distributed models of
sketches?

Google Megastore, Tenzing or Spanner?
Apache Accumulo?
Is a graph database more appropriate?
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Presentations

A sketch | first-order theory | ontology is a presentation of knowledge.
Presentations generate additional knowledge needed for alignment
(e.g., ‘uncle = brother ◦ parent’)

Logical theory T syntactic category CT
Ontology rules
Sketch S theory of a sketch T(S)

Different presentations may generate ‘equivalent’ structures.
Sketches S1 and S2 representing common concepts are aligned by finding a
sketch V and sketch maps as shown.

S1

��

V

yyrrr
rr
r

%%▲▲
▲▲

▲▲
S2

��
T1

&&▲▲
▲▲

▲▲
T2

xxrrr
rr
r

T
Theory of a (linear) sketch

Carmody-Walters algorithm for computing left Kan extensions: generalizes
Todd-Coxeter procedure used in computational group theory
Complexity difficult to characterize: can depend on order of constraints
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Civics Sketch S1

First formulation of civics concepts:

Two classes: People and Elected officials

People have Elected representatives via r .

Elected officials are instances of people via u.

Elected officials represent themselves via a diagram.

Sketch

Graph Diagram Theory

Elected People

u

r

Elected People

Elected

u

r
id

Elected People

u

r

id id

u ◦ r

The diagram truncates the infinite list of composites (property chains).

u ◦ r r ◦ u u ◦ r ◦ u r ◦ u ◦ r · · ·
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Civics Sketch S2

Alternative formulation of the concepts:

One class: Citizens

Citizens have elected representatives via e.

Elected officials represent themselves via a diagram.

Sketch

Graph Diagram Theory

Citizens

e

Citizens Citizens

Citizens

e

e
e

Citizens

id

e

Number and names of vertices in S1 and S2 differ.

The edges u and r of S1 have no corresponding edges in S2.

The edge e of S2 has no corresponding edge in S1.
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Alignment of the Civics Sketches

X X

X

f

f
f
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Elected

u

r
id
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e

e
e
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r

S2
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V

X

f

T1 Elected People

u

r

id id

u ◦ r

T2Citizens

id

e

T

Elected People

u

r

id id
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Sketch Alignment: Questions

What algorithms are available for computing the theory of a sketch?

Carmody-Walters for linear sketches
Others?

To what extent can the sketch alignment problem be automated?

Find the appropriate intersection
Renaming of vertices and edges

Can instance data be used to support sketch alignment?
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First-Order Civics Theories T1 and T2

T1

Sorts: People, Elected
Function symbols:

u : Elected −→ People r : People −→ Elected

Axiom: elected officials represent themselves

⊤ ⊢x (r(u(x)) = x)

T2

Sorts: Citizens
Function symbols:

e : Citizens −→ Citizens

Axiom: elected officials represent themselves

⊤ ⊢x (e(e(x)) = e(x))
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First-Order Logic: Sequent Calculus

Structural Rules1

(ϕ ⊢~x ϕ)
(ϕ ⊢~x ψ)

(

ϕ[~s/~x ] ⊢~y ψ[~s/~x ]
)

(ϕ ⊢~x ψ) (ψ ⊢~x χ)

(ϕ ⊢~x χ)

Implication

((ϕ ∧ ψ) ⊢~x χ)

(ϕ ⊢~x (ψ ⇒ χ))

Equality

(⊤ ⊢x (x = x))

((~x = ~y) ∧ ϕ ⊢~z ϕ[~y/~x ])

Quantification2

(

ϕ ⊢~x ,y ψ
)

((∃y)ϕ ⊢~x ψ)

(

ϕ ⊢~x,y ψ
)

(ϕ ⊢~x (∀y)ψ)

Conjunction

(ϕ ⊢~x ⊤) ((ϕ ∧ ψ) ⊢~x ϕ) ((ϕ ∧ ψ) ⊢~x ψ)
(ϕ ⊢~x ψ) (ϕ ⊢~x χ)

(ϕ ⊢~x (ψ ∧ χ))

Disjunction

(⊥ ⊢~x ϕ) (ϕ ⊢~x (ϕ ∨ ψ)) (ψ ⊢~x (ϕ ∨ ψ))
(ϕ ⊢~x χ) (ψ ⊢~x χ)

((ϕ ∨ ψ) ⊢~x χ)

Distributive Law3

((ϕ ∧ (ψ ∨ χ) ⊢~x (ϕ ∧ ψ) ∨ (ϕ ∧ χ))

Frobenius Axiom3

((ϕ ∧ ((∃y)ψ) ⊢~x (∃y) (ϕ ∧ ψ))

Excluded Middle

(⊤ ⊢x (ϕ ∨ ¬ϕ))
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Soundness

Soundness Theorem: Let T be a Horn theory and let M be a model
of T in a cartesian category. If ϕ ⊢~x ψ is provable from T in Horn
logic, then the sequent is satisfied in M.

Proof: Induction on inference rules using the category properties
used to define semantics of terms- and formulae-in-context.

We can replace Horn and cartesian by any combination of:

Logic Category

Regular Regular
Coherent Coherent
First-order Heyting
Classical first-order Boolean coherent
Linear ∗-autonomous
Intuitionistic higher-order Topos
S4 modal (predicate) sheaves on a topological space
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Completeness

Completeness Theorem: Let T be a regular theory. If ϕ ⊢~x ψ is a
regular sequent that is satisfied in all models of T in regular
categories D, then it is provable from T in regular logic.

Proof: Construct the syntactic category CT with a generic model MT

category of models
of T in D

∼=
category of regular functors

CT → D

ModT(D) ∼= Reg(CT, D)

We can replace regular theories and categories by any of:

Logic Category

Cartesian Cartesian
Coherent Coherent
First-order Heyting

The Completeness Theorem also holds if we replace D by Set.
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Alignment of Logical Theories

Provable equivalence: applicable to theories over the same signature

Theories T1 and T2 are Morita equivalent if their categories of models
ModT(D) (in any category D of the appropriate class) are equivalent.

ModT1(D) ∼= ModT2(D)

Theories are Morita equivalent iff their syntactic categories are.

CT1
∼= CT2

This solves the alignment problem for the civics theories.

It can be difficult to use in practice.

Types are interpreted as equivalence classes of formulae
Functions and relations are interpreted as equivalence classes of formuae
Syntactic categories are typically infinite, even for simple theories
No general algorithm exists
Could one develop a lazy algorithm?
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Syntactic Categories

Let T be a regular theory. There is a regular category CT that has a
model of T.

objects: α-equivalence classes of formulae-in-context: {~x .ϕ}
where ϕ is regular over T

morphisms : {~x.ϕ}
[θ] // {~y .ψ}

θ ⊢~x,~y ϕ ∧ ψ ϕ ⊢~x (∃~y )θ θ ∧ θ[~z/~y ] ⊢~x,~y,~z (~z = ~y)

composition: {~x.ϕ}
[θ] //

[(∃~y)(θ∧γ)] ##❍
❍❍

❍❍
❍❍

❍❍
{~y .ψ}

[γ]

��
{~z .χ}

identity: {~x.ϕ}
[ϕ∧(~x′=~x)] // {~x ′.ϕ[~x ′/~x ]}
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Syntactic Categories (Continued)

CT contains a model of T.

sorts A {x .⊤} for x : A

types 1 {[].⊤}

A1 × · · · × An {~x .⊤} for xi : Ai

function symbols f : A1 × · · · × An → B {~x.⊤}
[f (x1,...,xn)=y ] // {y .⊤}

for xi : Ai and y : B

relation symbols R ֌ A1 × · · · × An {~x.R(~x)} // {~x .⊤}

The axioms of T are satisfied in this model.
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Proof of (u(x) = u(y)) ⊢x ,y (x = y) for Civics Theory T1

1 (u(x) = u(y)) ⊢x,y (u(x) = u(y)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Id
2 (u(x) = u(y)) ⊢x,y ⊤ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .⊤
3 ⊤ ⊢x (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . axiom
4 ⊤ ⊢x,y (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub (3)
5 ⊤ ⊢x,y (r(u(y)) = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sub (3)
6 (x = y) ∧ (r(x) = z) ⊢x,y,z (r(y) = z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eq1
7 (u(x) = u(y)) ∧ (r(u(x)) = x) ⊢x,y,z (r(u(y)) = x) . . . . . . . . . . . . . . . . . . . . . . . .Subs (6)
8 (u(x) = u(y)) ∧ (r(u(x)) = x) ⊢x,y (r(u(y)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . Subs (7)
9 (x = y) ⊢x,y (y = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . previous proof
10 (r(u(y)) = x) ⊢x,y (x = r(u(y))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Subs (9)
11 (u(x) = u(y)) ∧ (r(u(x)) = x) ⊢x,y (x = r(u(y))) . . . . . . . . . . . . . . . . . . . . . Cut (8), (10)
12 (x = y) ∧ (y = z) ⊢x,y,z (x = z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . previous proof
13 (x = r(u(y))) ∧ (r(u(y)) = y) ⊢x,y,z (x = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subs (12)
14 (x = r(u(y))) ∧ (r(u(y)) = y) ⊢x,y (x = y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Subs (13)
15 (u(x) = u(y)) ⊢x,y (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cut (2), (4)
16 (u(x) = u(y)) ⊢x,y (u(x) = u(y)) ∧ (r(u(x)) = x) . . . . . . . . . . . . . . . . . . . . . .∧I (1), (15)
17 (u(x) = u(y)) ⊢x,y (x = (r(u(y))) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cut (16), (11)
18 (u(x) = u(y)) ⊢x,y (r(u(y)) = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cut (2), (5)
19 (u(x) = u(y)) ⊢x,y (x = r(u(y))) ∧ (r(u(y)) = y) . . . . . . . . . . . . . . . . . . . . .∧I (17), (18)
20 (u(x) = u(y)) ⊢x,y (x = y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Cut (19), (14)
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Prover9 Proof

Input file:
formulas(assumptions).

all x (r(u(x)) = x).

end of list.

formulas(goals).

all x all y (u(x) = u(y)) -> (x = y).

end of list.

Proof:
1 (all x r(u(x)) = x) ....................# label(non clause). [assumption].

2 (all x all y u(x) = u(y)) -> x = y .................# label(non clause)
# label(goal). [goal].

3 r(u(x)) = x. ...................................................[clausify(1)].

4 u(x) = u(y). ........................................................[deny(2)].

5 c2 != c1. ...........................................................[deny(2)].

6 x = y. ............................ [para(4(a,1),3(a,1,1)),rewrite([3(2)])].

7 $F. .........................................................[resolve(6,a,5,a)].

The shorter proof by contradiction uses classical first-order logic.

First-order horn logic has lower computational complexity in general.
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Q-Sequences and Q-Trees (Freyd-Scedrov 1990)

P. Freyd and A. Scedrov. Categories, Allegories. 1990

A Q-sequence Q = (A, a,Q) in a category D consists of lists of
objects A0, . . . , An

morphisms ai : Ai → Ai+1 for 0 ≤ i < n

quantifiers Q0, . . . , Qn

A0

Q0

| A1

Q1

| · · ·
Qn−1

| An

Qn

|

σQ is: A1

Q1

| · · ·
Qn−1

| An

Qn

|

A morphism A0
f0−→ B satisfies Q if one of the following holds:

n = 0 and Q0 = ∀

n > 0, Q0 = ∀, and for every commutative triangle A0
a0 //

f0
  ❆

❆❆
❆

A1

f1
~~

B

, the

morphism A1
f1−→ B satisfies the Q-sequence σQ

n > 0, Q0 = ∃, and there exists a commutative triangle A0
a0 //

f0
  ❆

❆❆
❆

A1

f1
~~

Bfor which A1
f1−→ B satisfies the Q-sequence σQ

Q-trees generalize Q-sequences by allowing branching.
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Sketch Inference

In civics sketch S1, we may conclude

that Elected is a subclass of People.
Graph Diagram

Elected People

u

r

Elected People

Elected

u

r
id

∀

Z

x

+
--

y
22Elected

∃

Z

x

+
--

y
22Elected

u // People

∀

Z

x

+
--

y
22Elected

u // People r // Elected

∃

Z

x

+
--

y
22Elected

id

33
u // People

r // Elected

∀

Z

x --

y
22Elected

id

33
u // People

r // Elected
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Sketch Reasoning: Questions

Categories, Allegories: 1.3(10)1. Any elementary predicate in category

theory is given by a finitely presented Q-tree with a free category as root.

What algorithms have been developed for Q-tree inference?

Is there a correspondence between classes of logics (Horn, regular, etc.) and
classes of Q-trees?

Is there a correspondence between classes of sketches (linear, finite limit,
etc.) and classes of Q-trees?

τ categories as a guide to implementing cartesian categories?
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Transforming Sketches into First-Order Theories

Sketches are related to first-order logical theories by theorems of the form:
Given any sketch S of class X , there is a logical theory T of class Y for
which S and T have equivalent classes of models.

D2.2 of Johnstone’s Sketches of an Elephant: A Topos Theory Compendium

gives explicit constructions of T from S and conversely.

Class of Fragment of
Sketches Predicate Calculus Logical Connectives
finite limit cartesian =, ⊤, ∧, ∃∗

regular regular =, ⊤, ∧, ∃
coherent coherent =, ⊤, ∧, ∃, ⊥, ∨
geometric geometric =, ⊤, ∧, ∃, ⊥,

∨

σ-coherent σ-coherent =, ⊤, ∧, ∃, ⊥,

∞
∨

i=1finitary σ-coherent
∗ In cartesian logic, only certain existentially quantified formulae are allowed.
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Example: Transforming the Civics Sketches to Theories

General construction (D2.2 of Sketches of an Elephant by P.T. Johnstone)

Vertices become sorts
Edges become function symbols
No relation symbols
Diagrams become axioms
Cones and cocones induce axiom schema

S1 induces T1 and S2 induces T2

Add a finite limit constraint to S1

0 2

1

base
Elected

ElectedElected

Person

id

id

u

u
uϕ

All induced sequents are derivable in T1

⊤ ⊢x

(
u(x) = u(x)

)

⊤ ⊢x

(
u(x) = u(x)

)
(
(x = y) ∧ (u(x) = u(y)) ∧ (x = y)

)
⊢x,y (x = y)

(
(u(x) = y) ∧ (u(x ′) = y)

)
⊢x,x′,y ∃x0

(
(x0 = x) ∧ (u(x0) = y) ∧ (x0 = x ′)

)
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Sketch Translations: Questions

The proof in 2.2.1 of Johnstone’s Sketches of an Elephant of the
existence of a Morita equivalent sketch for a logical theory (both of
suitable classes) is not a direct construction.

Is there an explicit (finite) construction?

What classes of sketches correspond to OWL dialects?

How could such mappings be used to solve the ontology alignment
problem?

transform ontologies to sketches + instance data
align the sketches
transform back to ontologies (if necessary)
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Quantum Kan Extensions

Quantum Kan Extensions. IARPA seedling with N. Yanofsky (CUNY)

What tasks will quantum computers be able to perform better than classical
machines?
Research findings (for Kan extensions in Setf )

Known quantum algorithms
Exact quantum algorithms do not improve upon classical complexity
NP Complete problem
Focus on approximate algorithms, coequalizers and Kan extensions in categories
with additional algebraic structure.

Left Kan Extensions

addition

coproduct

coeq

Dominating
Set Problem

Carmody-
Walters

Todd-
Coxeter

Right Kan Extensions

multiplication

product

eq

Right Kan

pullback

claws

Grovercounting
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Kan Extensions: Definitions

Given:
Categories A and B (presented as directed graphs with commutativity
constraints)
A functor F : A → B (assigning a B-path to each A-edge)
An action X : A → Sets (assigning a set to each A-vertex and a
function to each A-edge)

A left Kan extension of X along F consists of:
An action L : B → Sets

A natural transformation ǫA : X (A) → L(F (A))

A B

Sets

X

F

L
=⇒
ǫ

These ingredients satisfy a universal mapping property.

A right Kan extension has ǫ going the other way ǫA : L(F (A)) → X (A).

Mac Lane: “All concepts are Kan extensions.”
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Kan Extensions: Examples

Right Kan Extensions Left Kan Extensions

products coproducts
equalizers coequalizers
fixed points orbits

greatest lower bound least upper bound
intersection union

conjunction ∧ implication ⇒
existential quantification ∃ universal quantification ∀

left adjoints right adjoints
limits colimits
ends coends
claws coset enumeration

Right Kan extensions can be calculated from products and equalizers.

Left Kan extensions can be calculated from coproducts and coequalizers.
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Quantum Algorithms for Pullbacks

Classical complexity: O(N logX ) (N = max{X ,Y }) to find all claws

O(X logX ) comparisons to sort the values f (x)

For each y , O(logX ) comparisons to search for x with f (x) = g(y)

Buhrman, Dürr, Heiligman, Høyer, Magniez, Santha and de Wolf.
Quantum Algorithms for Element Distinctness. 2005.

O
(

X 1/2Y 1/4 logX
)

comparisons to (with high probability) find a claw
(if X ≤ Y ≤ X 2) and O(Y logX ) if Y > X 2

Theorem: Quantum computers cannot improve upon classical
complexity of exact pullback calculations.

Assume we have a quantum algorithm that calculates pullbacks.
Given f : X → Y , form the pullback P of f with itself.
P − X counts the number of collisions (i.e., remove the diagonal).
Consequently, an efficient pullback algorithm gives an an efficient
algorithm for exactly counting the number of collisions.
This contradicts Theorem 6.1 of the reference cited above.
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Quantum Algorithms for Equalizers

Classical complexity of finding (E , e) is O(X ).
Theorem: Quantum computers can not improve upon the classical
complexity of exact equalizer calculations.

Algorithms for equalizers and products give an algorithm for pullbacks.

X f
((◗◗

◗◗
◗◗

E
e // X × Y

π1
44❥❥❥❥❥❥

π2 **❚❚❚
❚❚❚

Z

Y g

66♠♠♠♠♠♠

Approximate quantum algorithm:
Brassard, Høyer, Mosca and Tapp. Quantum Amplitude Amplification
and Estimation. 2000.

Thm. 18. Approx Count with 1
3X

<ε≤1 outputs Ẽ with |Ẽ − E |< εE
with probability 2/3 and uses an expected number of evaluations of f
in the order of

√
X/φ +

√
E (X − E)/φ where φ = ⌊εE⌋+ 1.

Childs and Eisenberg. Quantum Algorithms for Subset Finding. 2003.

Thm. 1. The query complexity of Ẽ -subset finding is O(X Ẽ/(Ẽ+1)).

What if Approx Count miscounts?
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Quantum Algorithms for Coproducts

Adaptation of classical algorithms
Vedral, Barenco and Ekert. Quantum Networks for Elementary
Arithmetic Operations. 1996

O(n) depth and O(n) ancillary qubits

Draper, Kutin, Rains and Svore. A Logarithmic-Depth Quantum
Carry-Lookahead Adder. 2008

O(log(n)) depth and O(n) ancillary qubits

Cuccaro, Draper, Kutin and Moulton. A New Quantum Ripple-Carry
Addition Circuit. 2008

O(n) depth and 1 ancillary qubit

Approximate Fourier transform

Draper. Addition on a Quantum Computer. 2000
Barenco, Ekert, Suominen and Törmä. Approximate Quantum Fourier
Transform and Decoherence. 2008
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Coproducts: Implementation (Quipper)

Cuccaro, Draper, Kutin and Moulton. A new quantum ripple-carry addition
circut. 2008. arXiv:quant-ph/0410184v1

We can implement this in Quipper. Here is a 6-bit circuit:
0

0

0

0

0

0

0

0

0

0

0

0

0

0

c0

b0

a0

b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

z

0

s0

a0

s1

a1

s2

a2

s3

a3

s4

a4

s5

a5

z+s6

maj :: (Qubit,Qubit,Qubit)->Circ(Qubit,Qubit,Qubit)

maj (q1, q2, q3) = do

q2 <- qnot q2 ‘controlled‘ q3

q1 <- qnot q1 ‘controlled‘ q3

q3 <- qnot q3 ‘controlled‘ [q1, q2]

return (q1, q2, q3)

uma :: (Qubit,Qubit,Qubit)->Circ(Qubit,Qubit,Qubit)

uma (q1, q2, q3) = do

q3 <- qnot q3 ‘controlled‘ [q1,q2]

q1 <- qnot q1 ‘controlled‘ q3

q2 <- qnot q2 ‘controlled‘ q1

return (q1, q2, q3)

This implementation is distinct from that in the Libraries.Arith Quipper
module which has many more ancillary qubits.

Note: See quantum programming language references by P. Selinger
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The Todd-Coxeter Coset Enumeration Algorithm

Dehn (1911): Find an algorithm to decide whether, in a
finitely-presented group, a word in the generators represents the
identity element.
Todd-Coxeter (1936): Algorithm for enumerating cosets of H ≤ G .

Haselgrove (1953) gave the first computer implementation.
Now implemented in many computer algebra systems.

Novikov, Boone and Britton (1955–1963): The word problem is
unsolvable (in finite time by any Turing machine).
Cannon, Dimino, Havas and Watson. Implementation and Analysis of
the Todd-Coxeter Algorithm (1973).

Given group G and integer m, there is a presentation of G for which
Todd-Coxeter will generate at least m cosets.
The number of cosets generated by Todd-Coxeter can vary with the
order of the relations in the presentation.

Carmody-Walters (1995): Left Kan extension algorithm for
finitely-presented groups generalizes Todd-Coxeter.
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Calculation of Left Kan Extensions when C = Sets

L(B) =





∑

A∈A

B(F (A), B)× X (A)





/

∼ L(β)[b, x ] = [β ◦ b, x ]

(b′ ◦ F (a), x) ∼ (b′, X (a)(x))
A A′

a

F (A) F (A′)
F (a)

B

B ′

β

b b′

X (A) X (A′)
X (a)

L(B)
X (A)

B(F (
A),

B)

b

A

b
′◦F (

a)

x
•

X (A′)

B(F (
A
′ ),B

)

b

A′

b
′

X (a)(
x)

•

L(B ′)

L(β)

X (A)

B(F (
A),

B
′ )

b

A
β◦b

′◦F (
a)

x
•

[b, x ]

[β ◦ b, x ]
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Carmody-Walters Algorithm: Sample Calculation

Setup Generators Relation Category

|B| B

Sets
X L

P Q
q

p

P P

Q P Q

q

p q

p

id

P Q
q

p

q ◦ p ◦ q

p ◦ q ◦ p

id

p ◦ q

id

q ◦ p

q
◦
p
◦
q
◦
p

ǫ-tables

X (P) L(P)

1 1

X (Q) L(Q)

1 1

L-tables

L(P) L(Q)

1 2

2 3

3 4

4 5

L(Q) L(P)

1 2

2 3

3 4

4 5

5 6

Relation-table

L(P) L(Q) L(P) L(Q) L(P) L(P)

1 2 3 4 5 1

2 3 4 5 6 2

3 4 1 2 3 3

4 5 2 3 4 4

L(P) = arrows into P

L(Q) = arrows into Q
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Uncertainty

An incomplete list of mathematical models of uncertainty:
Probabilities, fuzzy sets, rough sets, vague sets, convex sets, intervals, upper
and lower probabilities, sets of probabilities, higher-order probabilities,
imprecise probabilities, fuzzy measures, inner measures, outer measures,
hints, boolean opinions of experts, probabilistic opinions of experts,
Dempster-Shafer belief functions, Spohnian disbelief functions, plausibility
functions, ranking functions, possibility functions, propositional logic,
predicate logic, higher-order logic, linear logic, intuitionistic logic, modal
logics, temporal logics, default logic, relative likelihoods, likelihood logic,
conditional logic, Bayesian networks, credal networks, neural networks,
gambles, . . .

Program:

Find category-theoretic formulations
Derive mappings
Establish logical properties

D. Scott and P. Krauss. Assigning Probabilities to Logical Formulas. 1966

“Apparently what is needed is a new interpretation of if-then statements”
J. Pearl. Probabilistic Reasoning in Intelligent Systems. 1988
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MesΠ

Lawvere (1960s, unpublished), Čencov (1982), Giry (1985)

MesΠ = Stochastic category or category of statistical decisions

Appears as the semantic category for the probabilistic functional
programming language λO . Pfenning, Park, and Thrun. A Probabilistic
Language Based on Sampling Functions. 2004

(Π, η, µ) is a monad on Mes with

ηX = Dirac measure and µX (̟)(A) =

∫

X

evA d̟

MesΠ is the Kleisli category of the monad.

Π2(Z)

µZ

��

convex sets

%%▲▲
▲▲

▲▲
▲▲

▲

Π(Y)

Π(g)
::✉✉✉✉✉✉✉
Π(Z) Mes

99rrrrrrrrr

&&▲▲
▲▲

▲▲
▲▲

Mes

X

f
<<③③③③③③
Y

g

::✉✉✉✉✉✉✉✉
Z MesΠ

OO

88rrrrrrrr
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Dempster-Shafer Theory

Adapt Wendt’s categogory M0RP of measure-zero reflecting maps
between probability spaces.

Define the category P0R of plausibility-zero reflecting maps between
Dempster-Shapfer spaces.

Obtain a faithful D : M0RP → P0R and a faithful V : P0R → M0RP
(via the Voorbraak map) satisfying the following with V right adjoint
to D.

P0R

V
��

M0RP

D

99sssssssss

1
// M0RP
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Belief States and Bayesian Belief States

Belief
States

V
Probabilities

Voorbraak map
Consistent with Dempster’s and Bayes’ Rules
Unnormalized version used by MIT LL and IDA

V(m) V(m⊕m) V(m⊕m⊕m) V (⊕10m) V (⊕20m)

Pignistic map
Inconsistent with Dempster’s and Bayes’ Rules
One method used by Rayetheon and Northrup-Grumman

P(m) P(m⊕m) P(m⊕m⊕m) P (⊕10m) P (⊕20m)
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Other Potential Research Directions

Context inference and ranking

Computational linguistics with the Lambek calculus

Information fusion using the stochastic category
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Challenge: Construct Views Tailored to Contexts

Research area with narrower scope: context-sensitive Internet search
Google patent for “methods, systems and apparatus including
computer program products, in which context can be used to rank
search results” (USPTO 8,209,331 — 2012)

Yandex personalized web search challenge: www.kaggle.com

User-selected context in IBM’s Watson
Techniques to infer context from activities and rank data elements

Variable-length hidden Markov model
Parametric models of users
RankNet, LambdaRank, RankSVM

Performance metrics used for context-sensitive rankings
Normalized discounted cumulative gain (scoring in Kaggle competition)

Kendall’s τ comparison of rankings
Jaccard distance between top N rankings and target
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