
The Functorial Data Model

Patrick Schultz, David Spivak, Ryan Wisnesky

Department of Mathematics
Massachusetts Institute of Technology

{schultzp, dspivak, wisnesky}@math.mit.edu

Foundational Methods in Computer Science
June 6, 2015

Outline

§ The functorial data model (my name) originated with Rosebrugh et al.
in the late 1990s.

§ Schemas are categories, instances are set-valued functors.
§ Spivak proposes using it to solve information integration problems.

§ I will describe:
§ Rosebrugh’s original model (the FDM)
§ How to use the FDM for information integration
§ Extending the FDM towards SQL (FQL)
§ Extending the FDM towards functional programming (FPQL)
§ Conjectures

§ Sponsored by:
§ ONR grant N000141310260
§ AFOSR grant FA9550-14-1-0031

2 / 31

Category theory

§ A category C consists of

§ a set of objects
§ for all objects X,Y a set CpX,Y q of arrows
§ for all objects X an arrow id P CpX,Xq
§ for all objects X,Y, Z a function ˝ : CpY, Zq ˆ CpX,Y q Ñ CpX,Zq
§ such that f ˝ id “ id and id ˝ f “ f and pf ˝ gq ˝ h “ f ˝ pg ˝ hq

§ A functor F : C Ñ D is a function taking objects in C to objects in D and arrows
f : X Ñ Y in C to arrows F pfq : F pXq Ñ F pY q in D such that F pidq “ id and
F pf ˝ gq “ F pfq ˝ F pgq.

§ A category presentation C consists of

§ a set of nodes
§ for all nodes X,Y a set CpX,Y q of edges
§ a set of path equations

§ A functor presentation F : C Ñ D is a function taking nodes in C to nodes in D
and edges f : X Ñ Y in C to paths F pfq : F pXq Ñ F pY q in D such that
C $ p “ q implies D $ F ppq “ F pqq.

3 / 31

The Functorial Data Model

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zzDom
‚

Emp.manager.works “ Emp.works

Dept.secretary.works “ Dept

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name

q10 102 CS

x02 101 Math

Dom

ID

Al

Akin

Bob

Bo

Carl

Cork

CS

Math

4 / 31

Convention
§ Omit Dom table, and draw edges ‚ Ñf ‚Dom as ‚ ´ ˝f :

Emp
‚

works //

manager
��

first

��
last

��

Dept
‚

secretary
oo

name

zzDom
‚

“

Emp
‚

works //

manager
��

Dept
‚

secretary
oo

first
˝

last
˝

name
˝

5 / 31

The Functorial Data Model (abbreviated)

Emp
‚

works //

manager
��

Dept
‚

secretary
oo

first
˝

last
˝

name
˝

Emp.manager.works “ Emp.works Dept.secretary.works “ Dept

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID sec name

q10 102 CS

x02 101 Math

6 / 31

Functorial Data Migration

§ A functor F : S Ñ T is a constraint-respecting mapping:

nodespSq Ñ nodespT q edgespSq Ñ pathspT q

and it induces three adjoint data migration functors:

§ ∆F : T -inst Ñ S-inst (like project)

S
F //

∆F pIq :“ I˝F

66T
I // Set

§ ΠF : S-inst Ñ T -inst (like join)

∆F % ΠF

§ ΣF : S-inst Ñ T -inst (like outer disjoint union then quotient)

ΣF % ∆F

7 / 31

∆ (Project)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

∆F
ÐÝÝ

N

ID Name Salary Age

a Alice $100 20

b Bob $250 20

c Sue $300 30

8 / 31

Π (Join)
Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

ΠF
ÝÝÑ

N

ID Name Salary Age

a Alice $100 20

b Alice $100 20

c Alice $100 30

d Bob $250 20

e Bob $250 20

f Bob $250 30

g Sue $300 20

h Sue $300 20

i Sue $300 30

9 / 31

Σ (Union)

Name
˝

Salary
˝

N1
‚

N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary

1 Alice $100

2 Bob $250

3 Sue $300

N2

ID Age

4 20

5 20

6 30

ΣF
ÝÝÑ

N

ID Name Salary Age

a Alice $100 null1
b Bob $250 null2
c Sue $300 null3
d null4 null5 20

e null6 null7 20

f null8 null9 30

10 / 31

Foreign keys

Name
˝

Salary
˝

N1
‚

f // N2
‚

Age
˝

F
ÝÝÝÑ

Name
˝

Salary
˝

N
‚

Age
˝

N1

ID Name Salary f

1 Alice $100 4

2 Bob $250 5

3 Sue $300 6

N2

ID Age

4 20

5 20

6 30

∆F
ÐÝÝ

ΠF ,ΣF
ÝÝÝÝÝÑ

N

ID Name Salary Age

a Alice $100 20

b Bob $250 20

c Sue $300 30

11 / 31

Self-managers

Emp
‚

mgr

�� F
ÝÝÝÑ SelfMgr

‚

§ ∆F will copy SelfMgr into Mgr, and put the identity into mgr.

§ ΠF will migrate into SelfMgr those Emps who are their own mgr.

§ ΣF will migrate into SelfMgr representatives of the “management
groups” of Emp, i.e. equivalence classes of Emps modulo the
equivalence relation generated by mgr.

§ Adjoints are only unique up to isomorphism; hence, there are many ΣF

functors; each will choose a different representative.

12 / 31

Pivot (Instance ô Schema)

CS
‚

q10
‚name

oo 101
‚

works
oo first //

mgr

��

last

''Al
‚

Akin
‚

Math
‚

x02
‚name

oo 102
‚

works
oo first //

last

&&

mgr

QQ
Bob
‚

Bo
‚

103
‚

works

SS

mgr

QQ
first //

last

''Carl
‚

Cork
‚

Emp

ID mgr works first last

101 103 q10 Al Akin

102 102 x02 Bob Bo

103 103 q10 Carl Cork

Dept

ID name

q10 CS

x02 Math

13 / 31

Evaluation of the functorial data model

§ Positives:
§ The category of categories is bi-cartesian closed (model of the STLC).
§ For each category C, the category C-inst is a topos (model of HOL).
§ Data integrity constraints (path equations) are built-in to schemas.
§ Data migration functors transform entire instances.
§ The FDM is expressive enough for many information integration tasks.
§ Easy to pivot.

§ Negatives:
§ Data integrity constraints (in schemas) are limited to path equalities.
§ Data migrations lack analog of set-difference.
§ No aggregation.
§ Data migration functors are hard to program directly.
§ Instance isomorphism is too coarse for many integration tasks.
§ Many problems about finitely-presented categories are semi-computable:

§ Path equivalence (required to check functors are constraint-respecting).
§ Generating a category from a presentation (hence the category of

finitely-presented categories is not cartesian closed).

14 / 31

The Attribute Problem
N

ID Name Age Salary

1 Alice 20 $100

2 Bob 20 $250

3 Sue 30 $300

– (good)

N

ID Name Age Salary

4 Alice 20 $100

5 Bob 20 $250

6 Sue 30 $300

– (bad)

N

ID Name Age Salary

1 Amy 20 $100

2 Bill 20 $250

3 Susan 30 $300

15 / 31

Solving the Attribute Problem

§ Mark certain edges to leaf nodes as “attributes”.
§ In this extension, a schema is a category C, a discrete category C0, and

a functor C0 Ñ C. Instances and migrations also generalize.
§ Schemas become special ER (entity-relationship) diagrams.
§ The FDM takes C0 to be empty.
§ The example schema below, which was an abbreviation in the FDM, is a

bona-fide schema in this extension: attributes are first, last, and name.

Emp
‚

works //

manager

��
Dept
‚

secretary
oo

first
˝

last
˝

name
˝

16 / 31

Solved Attribute Problem
N

ID Name Age Salary

1 Alice 20 $100

2 Bob 20 $250

3 Sue 30 $300

– (good)

N

ID Name Age Salary

4 Alice 20 $100

5 Bob 20 $250

6 Sue 30 $300

fl (good)

N

ID Name Age Salary

1 Amy 20 $100

2 Bill 20 $250

3 Susan 30 $300

17 / 31

FQL - A Functorial Query Language

§ The “schemas as ER diagrams” extension to the functorial data model
is the basis of FQL.

§ Open-source, graphical IDE available at categoricaldata.net/fql.html.

§ FQL translates data migrations of the form

ΣF ˝ΠG ˝∆H

into SQL and vice versa. Caveats:
§ F must be a discrete op-fibration (ensures union compatibility).
§ G must be a surjection on attributes (ensures domain independence).
§ All categories must be finite (ensures computability).
§ FQL ÞÑ SPCU+idgen (sets)

SPCU (bags) ÞÑ FQL, SPCU (sets) ÞÑ FQL+squash
selection equality conjunctive and between variables only.

§ Theorem: FQL queries are closed under composition.

18 / 31

FQL Demo

19 / 31

FQL evaluation

§ Positives:
§ Attributes.
§ Running on SQL enables interoperability and execution speed.
§ Better Σ semantics than TGD-only systems (e.g., Clio).

§ Negatives:
§ No selection by constants.
§ Relies on fresh ID generation.
§ Cannot change type of data during migration.
§ Attributes not nullable.

§ Apply type-theory to FQL to overcome negatives.

20 / 31

FPQL - a functorial programming and query language

§ FPQL extends FQL schemas to include edges between attributes.
§ A typing Γ is a category with terminal object.
§ A schema S on typing Γ is a category extending Γ in a special way.
§ An instance I on schema S is a category extending S in a special way.

§ Design decision: treat all categories as finitely-presented, and use
monoidal Knuth-Bendix to reduce paths.

§ FPQL instances are deductive databases, not extensional ones.
§ FPQL allows inconsistent and infinite databases, if desired.
§ FPQL cannot be implemented with SQL, but can borrow

implementation techniques from SQL.

21 / 31

Typings

§ A typing is a category with terminal object 1:

1
˝zero

__
Nat
˝

succ

MM
!Nat

CC

String
˝

length
oo

reverse

QQ
!String

hh

reverse.reverse “ id length “ reverse.length

§ Implicitly includes, for all well-typed edges e:

id1 “ !1 pe : tÑ 1q “ !t pe : tÑ t1q.!t1 “ !t

§ Objects are types, arrows are functions.

22 / 31

Schemas

§ A schema over a typing Γ is a category extending Γ with
§ New objects, called entities.
§ New arrows from entities to entities, called foreign keys.
§ New arrows from entities to types, called attributes.
§ New equations.

Emp
‚

!Emp
��

works //

manager
��

first

��

age

��

Dept
‚

secr
oo

name

��

!Dept

zz1
˝zero

��
Nat
˝

succ

MM
!Nat

BB

String
˝

length
oo

reverse

QQ
!String

hh

manager.works “ works secr.works “ id

23 / 31

Instances

§ An instance over a schema S is a category extending S with
§ New edges from 1, called variables, such as

bill : 1 Ñ Emp infinity : 1 Ñ Nat

§ New equations, such as

bill.age “ zero bill.works.secr.manager “ bill bill.manager “ bill

§ Tabular view of instances:

Emp

ID manager works age first

bill bill bill.works zero bill.first
bill.works.secr bill bill.works bill.works.secr.age bill.works.secr.first

Dept

ID secr name

bill.works bill.works.secr bill.works.name

24 / 31

FPQL Example

Nat: type

zero: Nat

succ: Nat -> Nat

String: type

reverse:

String -> String

length:

String -> Nat

eq1: reverse.reverse

= String

eq2: reverse.length

= length

S = schema {

nodes

Emp, Dept;

edges

age : Emp ->Nat,

first : Emp ->String,

name : Dept->String,

works : Emp ->Dept,

secr : Dept->Emp,

manager: Emp ->Emp;

equations

manager.works = works,

secr.works = Dept;

}

I = instance {

variables

bill : Emp,

infinity : Nat;

equations

bill.age = zero,

bill.works

.secr.manager

= bill;

} : S

25 / 31

Data Migration in FPQL

§ When S and T are schemas on typing Γ, a schema morphism
F : S Ñ T is a constraint-respecting mapping

nodespSq Ñ nodespT q edgespSq Ñ pathspT q

that is the identity on Γ.

§ ΣF is defined to be substitution along F :

v : 1 Ñ X P I implies v : 1 Ñ F pXq P ΣF pIq

§ ΣF % ∆F % ΠF

§ Migrations ΣF ˝∆G ˝ΠF , where F is a discrete op-fibration, are
closed under composition, and can be written in SQL-like syntax.

26 / 31

Flower Syntax in FPQL

Emp
‚

works //

manager

��
Dept
‚

secr
oo

first
˝

last
˝

name
˝

FPQL SQL

select e.first select e.first

from Emp as e from Emp as e, Emp as f

where e.manager.manager = e where e.manager = f.ID and

f.manager = e.ID

27 / 31

Uber-Flower Syntax in FPQL
§ Set everyone’s manager to their manager’s manager:

Emp
‚

works //

manager

��
Dept
‚

secr
oo

first
˝

last
˝

name
˝

EmpQuery = {

from

Emp as e

attributes

first = e.first

last = e.last

edges

manager =

{e=e.manager.manager}:EmpQuery

works =

{d=e.works}:DeptQuery

} : Emp

DeptQuery = {

from

Dept as d

attributes

name = d.name

edges

secr = {e=d.secr}:EmpQuery

} : Dept

28 / 31

Evaluation of FPQL

§ Positives
§ Flower syntax
§ Can change type of data
§ Nullable attributes
§ Typings allow functional programming
§ Σ is extremely cheap

§ Negatives
§ No special support for cartesian closed typings (λ-calculi)
§ Categories of instances on a fixed schema are not cartesian closed
§ Cannot run on SQL

29 / 31

Conjectures

§ An embedded dependency (ED) is a lifting problem.

§ The chase is a left Kan extension.

§ ΣF ,∆F and ∆F ,ΠF are reverse data exchanges.

§ For every data migration F : S Ñ T , there exists an X such that F
can be implemented by chasing a set of EDs over S ` T `X.

30 / 31

Conclusion

§ Initial success using FPQL with NIST

§ Deep connections between the FDM and the relational model

§ Looking for collaborators

§ Future work:
§ Restrict typings to a particular cartesian closed category, e.g., Java
§ FQL flowers : SQL flowers as ? : EDs
§ Aggregation
§ Generating mappings from matchings
§ Entity-resolution
§ Algorithms

31 / 31

