The Functorial Data Model

Patrick Schultz, David Spivak, Ryan Wisnesky

Department of Mathematics
Massachusetts Institute of Technology

{schultzp, dspivak, wisnesky}@math.mit.edu

Foundational Methods in Computer Science
June 6, 2015

Outline

» The functorial data model (my name) originated with Rosebrugh et al.
in the late 1990s.
» Schemas are categories, instances are set-valued functors.
» Spivak proposes using it to solve information integration problems.

» | will describe:

» Rosebrugh’s original model (the FDM)

» How to use the FDM for information integration

» Extending the FDM towards SQL (FQL)

» Extending the FDM towards functional programming (FPQL)
» Conjectures

» Sponsored by:

» ONR grant N000141310260
» AFOSR grant FA9550-14-1-0031

)

31

Category theory

> A category C consists of
» a set of objects
» for all objects X,Y a set C(X,Y) of arrows
» for all objects X an arrow id € C(X, X)
» for all objects X, Y, Z a function o: C(Y,Z) x C(X,Y) — C(X, Z)
» such that foid =id and ido f = f and (fog)oh = fo(goh)
> A functor F': C — D is a function taking objects in C to objects in D and arrows
f: X > Y inCtoarrows F(f): F(X)— F(Y) in D such that F(id) = id and
F(fog)=F(f)oF(g)

> A category presentation C consists of

» a set of nodes
» for all nodes X,Y a set C(X,Y) of edges
» a set of path equations
> A functor presentation F': C — D is a function taking nodes in C to nodes in D
and edges f: X — Y in C to paths F(f): F(X) — F(Y) in D such that
C+ p=gqimplies D - F(p) = F(q).

31

The Functorial Data Model

manager
(I;\:np works Dept
. °

secretary

first
last

Dom
°

Emp.manager.works = Emp.works

Dept.secretary.works = Dept Dom
ID
Al

Emp
Dept i
ID mgr | works | first | last D seip — gklg
101 || 103 | ql0 | Al | Akin °
ql0 || 102 CS Bo
102 102 x02 Bob Bo 02 101 | Math Carl
103 || 103 | q10 | Carl | Cork | L= :
Cork
(&)

Math

31

Convention
» Omit Dom

table, and draw

edges e —¢ epyy, as ® — O :

manager
(;;p works Dept
. .

secretary

first
last
Dom
°
manager
works Dept
°
/ \ secretary

flrst Iast name

31

The Functorial Data Model (abbreviated)

manager
works Dept
[]
/ \ secretary
flrst Iast name
o)
Emp.manager.works = Emp.works Dept.secretary.works = Dept
Emp
Dept
ID mgr | works | first | last D sei:p p—
101 103 ql0 Al Akin 0 102 S
102 || 102 | x02 | Bob | Bo 302 TTEmYT
103 103 ql0 Carl | Cork

6

31

Functorial Data Migration
» A functor F': S — T is a constraint-respecting mapping:
nodes(S) — nodes(T) edges(S) — paths(T')
and it induces three adjoint data migration functors:
» Ap: T-inst — S-inst (like project)
S—LEor 1. Set
Ap(I) i= IoF
» IIp: S-inst — T-inst (like join)
Ap 41lF
» ¥p: S-inst — T-inst (like outer disjoint union then quotient)

YXr-Ap

31

A (Project)

Name
¢}

Salary
o

Age

VN

Name
o

Salary
o

Age

N1 N2
ID || Name | Salary ID || Age ID || Name | Salary | Age
1 Alice $100 4 20 | SE . Alice $100 20
2 Bob $250 5 20 b Bob $250 20
3 Sue $300 6 30 c Sue $300 30

31

IT (Join)

Name Name
o O
Salary Salary
O O
N1 / N2 N /
[[] []
Age Age
O O
ID || Name | Salary | Age
a Alice $100 20
N1 N2 b Alice $100 20
ID Name | Salary ID || Age c Alice $100 30
1 Alice $100 4 20 RN d Bob $250 20
2 Bob $250 5 20 e Bob $250 20
3 Sue $300 6 30 f Bob $250 30
g Sue $300 20
h Sue $300 20
i Sue $300 30

31

Y. (Union)

Name Name
e o
Salary Salary
o o
Nl/ N2 N/
[] [] []
Age Age
S S
N
m v [P T
ID || Name | Salary || ID || Age a lce iy
- Sp b Bob $250 nulls
1 Alice $100 4 20 — S $300 7
2 |[Bob | $250 |[5 || 20 ; nu'ﬁ — 7”2‘03
4 5
3 Sue $300 6 30 . alls walls 20
f nullg nully 30

10/31

Foreign keys

Name
O

[=4

Name
o

Salary
o

AN

Age

N1 N2
ID || Name | Salary | f ID || Age
1 Alice $100 | 4 4 20
2 Bob $250 | 5 5 20
3 Sue $300 | 6 6 30

AR

Ip,2p
—_—

ID || Name | Salary | Age
a Alice $100 20
b Bob $250 20
c Sue $300 30

31

Self-managers

mgr
(\/ F , | SelfMgr
Emp °
°

» Ar will copy SelfMgr into Mgr, and put the identity into mgr.

» Il will migrate into SelfMgr those Emps who are their own mgr.

» 3 will migrate into SelfMgr representatives of the “management
groups” of Emp, i.e. equivalence classes of Emps modulo the
equivalence relation generated by mgr.

» Adjoints are only unique up to isomorphism; hence, there are many ¥ p
functors; each will choose a different representative.

12/31

Pivot (Instance < Schema)

last

101 Afirst _ Al Akin
[) []
hame works
last
Math 102 first Bob Bo
[) []
name works
Omgr
last
works 103 frer Carl ™ Cork
mgr
Emp
Dept
ID mgr | works | first | last D er:1ame
101 103 ql0 Al Akin 10 TS
102 || 102 | x02 | Bob | Bo 202 o
103 103 ql0 Carl | Cork

13/31

Evaluation of the functorial data model

» Positives:

» The category of categories is bi-cartesian closed (model of the STLC).
» For each category C, the category C-inst is a topos (model of HOL).
» Data integrity constraints (path equations) are built-in to schemas.

» Data migration functors transform entire instances.

» The FDM is expressive enough for many information integration tasks.
» Easy to pivot.

» Negatives:

» Data integrity constraints (in schemas) are limited to path equalities.
» Data migrations lack analog of set-difference.

> No aggregation.

» Data migration functors are hard to program directly.

» Instance isomorphism is too coarse for many integration tasks.

> Many problems about finitely-presented categories are semi-computable:
» Path equivalence (required to check functors are constraint-respecting).

» Generating a category from a presentation (hence the category of
finitely-presented categories is not cartesian closed).

14 /31

The Attribute Problem

N
ID || Name | Age | Salary
1 Alice 20 $100
2 Bob 20 $250
3 Sue 30 $300
~ (good)
N
ID || Name | Age | Salary
4 Alice 20 $100
5 Bob 20 $250
6 Sue 30 $300
=~ (bad)
N
ID || Name | Age | Salary
1 Amy 20 $100
2 Bill 20 $250
3 Susan 30 $300

15/31

Solving the Attribute Problem

» Mark certain edges to leaf nodes as “attributes”.
> In this extension, a schema is a category C, a discrete category Cy, and
a functor Cy — C'. Instances and migrations also generalize.
» Schemas become special ER (entity-relationship) diagrams.
» The FDM takes Cj to be empty.
» The example schema below, which was an abbreviation in the FDM, is a
bona-fide schema in this extension: attributes are first, last, and name.

manager

works Dept
°

secretary

flrst last name

16 /31

Solved Attribute Problem

N
ID || Name | Age | Salary
1 Alice 20 $100
2 Bob 20 $250
3 Sue 30 $300
~ (good)
N
ID || Name | Age | Salary
4 Alice 20 $100
5 Bob 20 $250
6 Sue 30 $300
(good)
N
ID || Name | Age | Salary
1 Amy 20 $100
2 Bill 20 $250
3 Susan 30 $300

17/31

FQL - A Functorial Query Language

» The “schemas as ER diagrams” extension to the functorial data model
is the basis of FQL.

» Open-source, graphical IDE available at categoricaldata.net/fgl.html.

» FQL translates data migrations of the form
ZF o HG o) AH

into SQL and vice versa. Caveats:

» F must be a discrete op-fibration (ensures union compatibility).
» G must be a surjection on attributes (ensures domain independence).
» All categories must be finite (ensures computability).
» FQL — SPCU+idgen (sets)
SPCU (bags) — FQL, SPCU (sets) — FQL+squash
selection equality conjunctive and between variables only.

» Theorem: FQL queries are closed under composition.

18/31

FQL Demo

19/31

FQL evaluation

» Positives:

» Attributes.
» Running on SQL enables interoperability and execution speed.
» Better ¥ semantics than TGD-only systems (e.g., Clio).

» Negatives:
» No selection by constants.
» Relies on fresh ID generation.
» Cannot change type of data during migration.
» Attributes not nullable.

» Apply type-theory to FQL to overcome negatives.

20/31

FPQL - a functorial programming and query language

» FPQL extends FQL schemas to include edges between attributes.

» A typing T' is a category with terminal object.
» A schema S on typing I is a category extending I' in a special way.
» An instance I on schema S is a category extending S in a special way.

» Design decision: treat all categories as finitely-presented, and use
monoidal Knuth-Bendix to reduce paths.

» FPQL instances are deductive databases, not extensional ones.

» FPQL allows inconsistent and infinite databases, if desired.
» FPQL cannot be implemented with SQL, but can borrow
implementation techniques from SQL.

21/31

Typings

» A typing is a category with terminal object 1:

1
O
ZV \
Nat Azt 'String String
O O
length
succ reverse
reverse.reverse = id length = reverse.length

» Implicitly includes, for all well-typed edges e:
idy =14 (e:t—>1)=1 (e:t—t)ly=1

» Objects are types, arrows are functions.

Schemas

» A schema over a typing I is a category extending I' with
> New objects, called entities.
» New arrows from entities to entities, called foreign keys.
» New arrows from entities to types, called attributes.
» New equations.

manager
@p works Dept
° °

!Dept

Emp
age 1

(@)
Zer/ \
Nat ! 'String String
O @)

name

Nat

Q length ")

succ reverse

manager.works = works secr.works = id

23 /31

Instances

» An instance over a schema S is a category extending S with

» New edges from 1, called variables, such as

> New equations, such as

bill.age = zero

bill: 1 — Emp

» Tabular view of instances:

bill.works.secr.manager = bill

infinity: 1 — Nat

Emp
ID manager works age first
bill bill bill.works zero bill first
bill.works.secr bill bill.works bill.works.secr.age bill.works.secr.first
Dept
1D I secr | name
bill.works [[" bill.works.secr [bill.works.name

bill.manager = bill

24 /31

FPQL Example

Nat: type
zero: Nat
succ: Nat -> Nat

String: type
reverse:

String -> String
length:

String -> Nat

eql: reverse.reverse
= String

eq2: reverse.length
= length

S = schema {

nodes

Emp, Dept;

edges

age : Emp ->Nat,
first : Emp ->String,
name : Dept->String,
works : Emp ->Dept,
secr : Dept->Emp,

manager: Emp ->Emp;
equations

manager .works = works,
secr.works = Dept;

}

I = instance {

variables
bill : Emp,
infinity : Nat;

equations
bill.age = zero,

bill.works
.secr.manager

= bill;

}: 8

25 /31

Data Migration in FPQL

» When S and T are schemas on typing I', a schema morphism
F: S — T is a constraint-respecting mapping

nodes(S) — nodes(T) edges(S) — paths(T')

that is the identity on T,
» Y is defined to be substitution along F':

vil—>X €l implies wv:1— F(X) €Xp(I)
» X 4 Ap H1Ip

» Migrations X g o Ag oIlp, where F' is a discrete op-fibration, are
closed under composition, and can be written in SQL-like syntax.

26 /31

Flower Syntax in FPQL

manager
works Dept
L]
secr
flrst Iast name
o
FPQL SQL
select e.first select e.first
from Emp as e from Emp as e, Emp as f
where e.manager.manager = e where e.manager = f.ID and

f .manager = e.ID

27 /31

Uber-Flower Syntax in FPQL

» Set everyone's manager to their manager's manager:

manager

works

/\

ﬂrst last

EmpQuery = {
from
Emp as e
attributes
first = e.first
last = e.last
edges
manager =
{e=e.manager .manager}:EmpQuery
works =
{d=e.works}:DeptQuery
} : Emp

secr

Dept
°

name
O

DeptQuery = {

o

from

Dept as d
attributes

name
edges
secr =
Dept

= d.name

{e=d.secr}:EmpQuery

28 /31

Evaluation of FPQL

» Positives
» Flower syntax
» Can change type of data
> Nullable attributes
» Typings allow functional programming
» Y is extremely cheap

» Negatives
» No special support for cartesian closed typings (A-calculi)
» Categories of instances on a fixed schema are not cartesian closed
» Cannot run on SQL

29 /31

Conjectures

» An embedded dependency (ED) is a lifting problem.
» The chase is a left Kan extension.
» Xp,Ar and Ap, Iy are reverse data exchanges.

» For every data migration F': S — T, there exists an X such that F’
can be implemented by chasing a set of EDs over S + T + X.

30/31

Conclusion

» Initial success using FPQL with NIST
» Deep connections between the FDM and the relational model

» Looking for collaborators

» Future work:
» Restrict typings to a particular cartesian closed category, e.g., Java
» FQL flowers : SQL flowers as ? : EDs
» Aggregation
» Generating mappings from matchings
> Entity-resolution
» Algorithms

31/31

