The Functorial Data Model

Patrick Schultz, David Spivak, Ryan Wisnesky

Department of Mathematics
Massachusetts Institute of Technology

{schultzp, dspivak, wisnesky}@math.mit.edu

Foundational Methods in Computer Science
June 6, 2015
The functorial data model (my name) originated with Rosebrugh et al. in the late 1990s.
 - Schemas are categories, instances are set-valued functors.
 - Spivak proposes using it to solve information integration problems.

I will describe:
 - Rosebrugh's original model (the FDM)
 - How to use the FDM for information integration
 - Extending the FDM towards SQL (FQL)
 - Extending the FDM towards functional programming (FPQL)
 - Conjectures

Sponsored by:
 - ONR grant N000141310260
 - AFOSR grant FA9550-14-1-0031
Category theory

- A category \mathcal{C} consists of
 - a set of objects
 - for all objects X, Y a set $\mathcal{C}(X, Y)$ of arrows
 - for all objects X an arrow $id \in \mathcal{C}(X, X)$
 - for all objects X, Y, Z a function $\circ: \mathcal{C}(Y, Z) \times \mathcal{C}(X, Y) \rightarrow \mathcal{C}(X, Z)$
 - such that $f \circ id = id$ and $id \circ f = f$ and $(f \circ g) \circ h = f \circ (g \circ h)$

- A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is a function taking objects in \mathcal{C} to objects in \mathcal{D} and arrows $f: X \rightarrow Y$ in \mathcal{C} to arrows $F(f): F(X) \rightarrow F(Y)$ in \mathcal{D} such that $F(id) = id$ and $F(f \circ g) = F(f) \circ F(g)$.

- A category presentation \mathcal{C} consists of
 - a set of nodes
 - for all nodes X, Y a set $\mathcal{C}(X, Y)$ of edges
 - a set of path equations
- A functor presentation $F: \mathcal{C} \rightarrow \mathcal{D}$ is a function taking nodes in \mathcal{C} to nodes in \mathcal{D} and edges $f: X \rightarrow Y$ in \mathcal{C} to paths $F(f): F(X) \rightarrow F(Y)$ in \mathcal{D} such that $\mathcal{C} \vdash p = q$ implies $\mathcal{D} \vdash F(p) = F(q)$.
The Functorial Data Model

Emp:works \rightarrow manager \downarrow first \downarrow last \rightarrow Dept

Dept:secretary works \rightarrow Emp:manager:works = Emp:works

Dept:secretary:works = Dept

<table>
<thead>
<tr>
<th>Emp</th>
<th>ID</th>
<th>mgr</th>
<th>works</th>
<th>first</th>
<th>last</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>103</td>
<td>q10</td>
<td>Al</td>
<td>Akin</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>102</td>
<td>x02</td>
<td>Bob</td>
<td>Bo</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>103</td>
<td>q10</td>
<td>Carl</td>
<td>Cork</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dept</th>
<th>ID</th>
<th>sec</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>q10</td>
<td>102</td>
<td>CS</td>
<td></td>
</tr>
<tr>
<td>x02</td>
<td>101</td>
<td>Math</td>
<td></td>
</tr>
</tbody>
</table>
Convention

- Omit Dom table, and draw edges \(\bullet \xrightarrow{f} \bullet_{\text{Dom}} \) as \(\bullet - \circ \cdot f : \)

```
manager
Emp
  ↓
  ↓
first
last
Dom
  ↓
  ↓
name

manager
Emp
  ↓
  ↓
first
last
name
```
The Functorial Data Model (abbreviated)

Emp.manager.works = Emp.works
Dept.secretary.works = Dept

<table>
<thead>
<tr>
<th>ID</th>
<th>mgr</th>
<th>works</th>
<th>first</th>
<th>last</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>103</td>
<td>q10</td>
<td>Al</td>
<td>Akin</td>
</tr>
<tr>
<td>102</td>
<td>102</td>
<td>x02</td>
<td>Bob</td>
<td>Bo</td>
</tr>
<tr>
<td>103</td>
<td>103</td>
<td>q10</td>
<td>Carl</td>
<td>Cork</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>sec</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>q10</td>
<td>102</td>
<td>CS</td>
</tr>
<tr>
<td>x02</td>
<td>101</td>
<td>Math</td>
</tr>
</tbody>
</table>
Functorial Data Migration

- A functor $F: S \to T$ is a constraint-respecting mapping:

 $$\begin{align*}
 \text{nodes}(S) & \to \text{nodes}(T) \\
 \text{edges}(S) & \to \text{paths}(T)
 \end{align*}$$

 and it induces three adjoint data migration functors:

 - $\Delta_F: T\text{-inst} \to S\text{-inst}$ (like project)
 \[S \xrightarrow{F} T \xrightarrow{I} \text{Set} \]
 \[\Delta_F(I) := I \circ F \]

 - $\Pi_F: S\text{-inst} \to T\text{-inst}$ (like join)
 \[\Delta_F \dashv \Pi_F \]

 - $\Sigma_F: S\text{-inst} \to T\text{-inst}$ (like outer disjoint union then quotient)
 \[\Sigma_F \dashv \Delta_F \]
(Project)

\[
\begin{array}{lll}
\text{ID} & \text{Name} & \text{Salary} \\
1 & Alice & $100 \\
2 & Bob & $250 \\
3 & Sue & $300 \\
\end{array}
\]

\[
\begin{array}{ll}
\text{ID} & \text{Age} \\
4 & 20 \\
5 & 20 \\
6 & 30 \\
\end{array}
\]

\[
\begin{array}{llll}
\text{ID} & \text{Name} & \text{Salary} & \text{Age} \\
\hline
a & Alice & $100 & 20 \\
b & Bob & $250 & 20 \\
c & Sue & $300 & 30 \\
\end{array}
\]
Π (Join)

\[F \]

\[N \]

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Salary</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Alice</td>
<td>$100</td>
<td>20</td>
</tr>
<tr>
<td>b</td>
<td>Alice</td>
<td>$100</td>
<td>20</td>
</tr>
<tr>
<td>c</td>
<td>Alice</td>
<td>$100</td>
<td>30</td>
</tr>
<tr>
<td>d</td>
<td>Bob</td>
<td>$250</td>
<td>20</td>
</tr>
<tr>
<td>e</td>
<td>Bob</td>
<td>$250</td>
<td>20</td>
</tr>
<tr>
<td>f</td>
<td>Bob</td>
<td>$250</td>
<td>30</td>
</tr>
<tr>
<td>g</td>
<td>Sue</td>
<td>$300</td>
<td>20</td>
</tr>
<tr>
<td>h</td>
<td>Sue</td>
<td>$300</td>
<td>20</td>
</tr>
<tr>
<td>i</td>
<td>Sue</td>
<td>$300</td>
<td>30</td>
</tr>
</tbody>
</table>

N1

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>$100</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>$250</td>
</tr>
<tr>
<td>3</td>
<td>Sue</td>
<td>$300</td>
</tr>
</tbody>
</table>

N2

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Alice</td>
<td>$100</td>
</tr>
<tr>
<td>5</td>
<td>Bob</td>
<td>$250</td>
</tr>
<tr>
<td>6</td>
<td>Sue</td>
<td>$300</td>
</tr>
</tbody>
</table>

Π_F
\(\Sigma \) (Union)

\[
\begin{array}{c|c|c}
\text{ID} & \text{Name} & \text{Salary} \\
1 & Alice & 100 \\
2 & Bob & 250 \\
3 & Sue & 300 \\
\end{array}
\begin{array}{c|c|c}
\text{ID} & \text{Age} \\
4 & 20 \\
5 & 20 \\
6 & 30 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{ID} & \text{Name} & \text{Salary} & \text{Age} \\
\text{a} & Alice & 100 & \text{null}_1 \\
\text{b} & Bob & 250 & \text{null}_2 \\
\text{c} & Sue & 300 & \text{null}_3 \\
\text{d} & \text{null}_4 & \text{null}_5 & 20 \\
\text{e} & \text{null}_6 & \text{null}_7 & 20 \\
\text{f} & \text{null}_8 & \text{null}_9 & 30 \\
\end{array}
\]
Foreign keys

\[\Delta_F, \Pi_F, \Sigma_F \]

N1 | N2 | N

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Salary</th>
<th>Age</th>
<th>ID</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>$100</td>
<td>4</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>$250</td>
<td>5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>Sue</td>
<td>$300</td>
<td>6</td>
<td>6</td>
<td>30</td>
</tr>
</tbody>
</table>

\[a \quad Alice \quad $100 \quad 20 \]
\[b \quad Bob \quad $250 \quad 20 \]
\[c \quad Sue \quad $300 \quad 30 \]
Self-managers

- Δ_F will copy SelfMgr into Mgr, and put the identity into mgr.

- Π_F will migrate into SelfMgr those Emps who are their own mgr.

- Σ_F will migrate into SelfMgr representatives of the “management groups” of Emp, i.e. equivalence classes of Emps modulo the equivalence relation generated by mgr.
 - Adjoint functors are only unique up to isomorphism; hence, there are many Σ_F functors; each will choose a different representative.
Pivot (Instance ↔ Schema)

Emp

<table>
<thead>
<tr>
<th>ID</th>
<th>mgr</th>
<th>works</th>
<th>first</th>
<th>last</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>103</td>
<td>q10</td>
<td>Al</td>
<td>Akin</td>
</tr>
<tr>
<td>102</td>
<td>102</td>
<td>x02</td>
<td>Bob</td>
<td>Bo</td>
</tr>
<tr>
<td>103</td>
<td>103</td>
<td>q10</td>
<td>Carl</td>
<td>Cork</td>
</tr>
</tbody>
</table>

Dept

<table>
<thead>
<tr>
<th>ID</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>q10</td>
<td>CS</td>
</tr>
<tr>
<td>x02</td>
<td>Math</td>
</tr>
</tbody>
</table>
Evaluation of the functorial data model

- **Positives:**
 - The category of categories is bi-cartesian closed (model of the STLC).
 - For each category \(C\), the category \(C\)-inst is a topos (model of HOL).
 - Data integrity constraints (path equations) are built-in to schemas.
 - Data migration functors transform entire instances.
 - The FDM is expressive enough for many information integration tasks.
 - Easy to pivot.

- **Negatives:**
 - Data integrity constraints (in schemas) are limited to path equalities.
 - Data migrations lack analog of set-difference.
 - No aggregation.
 - Data migration functors are hard to program directly.
 - Instance isomorphism is too coarse for many integration tasks.
 - Many problems about finitely-presented categories are semi-computable:
 - Path equivalence (required to check functors are constraint-respecting).
 - Generating a category from a presentation (hence the category of finitely-presented categories is not cartesian closed).
The Attribute Problem

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>20</td>
<td>$100</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>20</td>
<td>$250</td>
</tr>
<tr>
<td>3</td>
<td>Sue</td>
<td>30</td>
<td>$300</td>
</tr>
</tbody>
</table>

≈ (good)

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Alice</td>
<td>20</td>
<td>$100</td>
</tr>
<tr>
<td>5</td>
<td>Bob</td>
<td>20</td>
<td>$250</td>
</tr>
<tr>
<td>6</td>
<td>Sue</td>
<td>30</td>
<td>$300</td>
</tr>
</tbody>
</table>

≈ (bad)

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amy</td>
<td>20</td>
<td>$100</td>
</tr>
<tr>
<td>2</td>
<td>Bill</td>
<td>20</td>
<td>$250</td>
</tr>
<tr>
<td>3</td>
<td>Susan</td>
<td>30</td>
<td>$300</td>
</tr>
</tbody>
</table>
Solving the Attribute Problem

- Mark certain edges to leaf nodes as “attributes”.
 - In this extension, a schema is a category \(C \), a discrete category \(C_0 \), and a functor \(C_0 \to C \). Instances and migrations also generalize.
 - Schemas become special ER (entity-relationship) diagrams.
 - The FDM takes \(C_0 \) to be empty.
 - The example schema below, which was an abbreviation in the FDM, is a bona-fide schema in this extension: attributes are first, last, and name.
Solved Attribute Problem

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alice</td>
<td>20</td>
<td>$100</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>20</td>
<td>$250</td>
</tr>
<tr>
<td>3</td>
<td>Sue</td>
<td>30</td>
<td>$300</td>
</tr>
</tbody>
</table>

≈ (good)

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Alice</td>
<td>20</td>
<td>$100</td>
</tr>
<tr>
<td>5</td>
<td>Bob</td>
<td>20</td>
<td>$250</td>
</tr>
<tr>
<td>6</td>
<td>Sue</td>
<td>30</td>
<td>$300</td>
</tr>
</tbody>
</table>

≠ (good)

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Age</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Amy</td>
<td>20</td>
<td>$100</td>
</tr>
<tr>
<td>2</td>
<td>Bill</td>
<td>20</td>
<td>$250</td>
</tr>
<tr>
<td>3</td>
<td>Susan</td>
<td>30</td>
<td>$300</td>
</tr>
</tbody>
</table>
FQL - A Functorial Query Language

- The "schemas as ER diagrams" extension to the functorial data model is the basis of FQL.
 - Open-source, graphical IDE available at categoricaldata.net/fql.html.
- FQL translates data migrations of the form

\[\Sigma_F \circ \Pi_G \circ \Delta_H \]

into SQL and vice versa. Caveats:
 - \(F \) must be a discrete op-fibration (ensures union compatibility).
 - \(G \) must be a surjection on attributes (ensures domain independence).
 - All categories must be finite (ensures computability).
 - FQL \(\mapsto \) SPCU+idgen (sets)
 SPCU (bags) \(\mapsto \) FQL, SPCU (sets) \(\mapsto \) FQL+squash
 selection equality conjunctive and between variables only.
- Theorem: FQL queries are closed under composition.
FQL Demo
FQL evaluation

- Positives:
 - Attributes.
 - Running on SQL enables interoperability and execution speed.
 - Better Σ semantics than TGD-only systems (e.g., Clio).

- Negatives:
 - No selection by constants.
 - Relies on fresh ID generation.
 - Cannot change type of data during migration.
 - Attributes not nullable.

- Apply type-theory to FQL to overcome negatives.
FPQL - a functorial programming and query language

- FPQL extends FQL schemas to include edges between attributes.
 - A typing Γ is a category with terminal object.
 - A schema S on typing Γ is a category extending Γ in a special way.
 - An instance I on schema S is a category extending S in a special way.

- Design decision: treat all categories as finitely-presented, and use monoidal Knuth-Bendix to reduce paths.

- FPQL instances are deductive databases, not extensional ones.
 - FPQL allows inconsistent and infinite databases, if desired.
 - FPQL cannot be implemented with SQL, but can borrow implementation techniques from SQL.
Typings

- A typing is a category with terminal object 1:

 ![Diagram]

 $$\text{reverse}.\text{reverse} = \text{id} \quad \text{length} = \text{reverse}.\text{length}$$

- Implicitly includes, for all well-typed edges e:

 $$id_1 = !_1 \quad (e : t \to 1) = !_t \quad (e : t \to t').!_{t'} = !_t$$

- Objects are types, arrows are functions.
Schemas

- A schema over a typing Γ is a category extending Γ with
 - New objects, called *entities*.
 - New arrows from entities to entities, called *foreign keys*.
 - New arrows from entities to types, called *attributes*.
 - New equations.

manager\[\downarrow\]Emp\[\downarrow\] works\[\rightarrow\] Dept

\begin{align*}
\text{manager.works} &= \text{works} & \text{secr.works} &= \text{id}
\end{align*}
Instances

- An instance over a schema S is a category extending S with
 - New edges from 1, called *variables*, such as
 \[
 \text{bill}: 1 \rightarrow \text{Emp} \quad \text{infinity}: 1 \rightarrow \text{Nat}
 \]
 - New equations, such as
 \[
 \text{bill.age} = \text{zero} \quad \text{bill.works.secr.manager} = \text{bill} \quad \text{bill.manager} = \text{bill}
 \]

- Tabular view of instances:

<table>
<thead>
<tr>
<th>Emp</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>manager</td>
<td>works</td>
<td>age</td>
<td>first</td>
</tr>
<tr>
<td>bill</td>
<td>bill</td>
<td>bill.works</td>
<td>zero</td>
<td>bill.first</td>
</tr>
<tr>
<td>bill.works.secr</td>
<td>bill</td>
<td>bill.works</td>
<td>bill.works.secr.age</td>
<td>bill.works.secr.first</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dept</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>secr</td>
<td>name</td>
</tr>
<tr>
<td>bill.works</td>
<td>bill.works.secr</td>
<td>bill.works.name</td>
</tr>
</tbody>
</table>
FPQL Example

Nat: type
zero: Nat
succ: Nat -> Nat

String: type
reverse: String -> String
length: String -> Nat

eq1: reverse.reverse = String

eq2: reverse.length = length

S = schema {

 nodes
 Emp, Dept;

 edges
 age : Emp -> Nat,
 first : Emp -> String,
 name : Dept -> String,
 works : Emp -> Dept,
 secr : Dept -> Emp,
 manager: Emp -> Emp;

 equations
 manager.works = works,
 secr.works = Dept;

}

I = instance {

 variables
 bill : Emp,
 infinity : Nat;

 equations
 bill.age = zero,
 bill.works
 .secr.manager
 = bill;

} : S
Data Migration in FPQL

- When S and T are schemas on typing Γ, a schema morphism $F: S \rightarrow T$ is a constraint-respecting mapping

\[
\text{nodes}(S) \rightarrow \text{nodes}(T) \quad \text{edges}(S) \rightarrow \text{paths}(T)
\]

that is the identity on Γ.

- Σ_F is defined to be substitution along F:

\[v: 1 \rightarrow X \in I \quad \text{implies} \quad v: 1 \rightarrow F(X) \in \Sigma_F(I)\]

- $\Sigma_F \dashv \Delta_F \dashv \Pi_F$

- Migrations $\Sigma_F \circ \Delta_G \circ \Pi_F$, where F is a discrete op-fibration, are closed under composition, and can be written in SQL-like syntax.
Flower Syntax in FPQL

FPQL
select e.first
from Emp as e
where e.manager.manager = e

SQL
select e.first
from Emp as e, Emp as f
where e.manager = f.ID and
 f.manager = e.ID
Set everyone’s manager to their manager’s manager:

```
EmpQuery = {
  from Emp as e
  attributes
    first = e.first
    last = e.last
  edges
    manager = 
      {e=e.manager.manager}:EmpQuery
    works = 
      {d=e.works}:DeptQuery
} : Emp

DeptQuery = {
  from Dept as d
  attributes
    name = d.name
  edges
    secr = {e=d.secr}:EmpQuery
} : Dept
```
Evaluation of FPQL

- Positives
 - Flower syntax
 - Can change type of data
 - Nullable attributes
 - Typings allow functional programming
 - Σ is extremely cheap

- Negatives
 - No special support for cartesian closed typings (λ-calculi)
 - Categories of instances on a fixed schema are not cartesian closed
 - Cannot run on SQL
Conjectures

- An embedded dependency (ED) is a lifting problem.

- The chase is a left Kan extension.

- Σ_F, Δ_F and Δ_F, Π_F are reverse data exchanges.

- For every data migration $F : S \to T$, there exists an X such that F can be implemented by chasing a set of EDs over $S + T + X$.
Conclusion

- Initial success using FPQL with NIST
- Deep connections between the FDM and the relational model
- Looking for collaborators

Future work:
- Restrict typings to a particular cartesian closed category, e.g., Java
- FQL flowers : SQL flowers as ? : EDs
- Aggregation
- Generating mappings from matchings
- Entity-resolution
- Algorithms