Operadics: the mathematics of modular design J

David I. Spivak

dspivak@math.mit.edu
Mathematics Department
Massachusetts Institute of Technology

Presented on 2015/09/30
at NIST

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 1/44


dspivak@math.mit.edu

]
Outline

Introduction

Operads and recipes
Defining operads

A Applications of operads
B Networks of networks

[@ Conclusion

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 2 /44



Introduction

Outline

Introduction
m Motivation
m Introducing operads

David I. Spivak (MIT)

Operads for modular design

Presented on 2015/09/30

3/44



Introduction Motivation

The promise of fractals

m | recall my father telling me about a kind of “fractal fever”.
m In the 1980s scientists were very interested in fractals, e.g., in:

m Plants (a single leaf or broccoli).
m Rivers, faults, and vasculature.
m Stock market fluctuations.

m Scientists wanted to use fractals as a conceptual tool for explaining
phenomena.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 4 /44



Introduction Motivation

It didn’t quite work for everyone; why?

m Fractals are a little too special: the machinery is too limited.

m Scientists for whom the analogy was compelling couldn’t always
produce:

m shapes with fractional dimension,

m patterns that repeat no matter how far you zoom in,

m iterated functions or recurrence relations to generate their phenomena.
m Fractals are always about space and geometry.
m The inspirational and compelling idea wasn't completely realized.

m Unlike fractals, the cases of interest weren't always geometric objects.
m Example: heredity and evolution occur hierarchically, but not spacially.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 5 /44



Introduction Introducing operads

Operads describe similar phenomena

m | believe the promise of fractals may still be realized by operads.
m By “the promise of fractals” | roughly mean:
® a mathematical formalism for understanding self-similarity across scales.
m An operad O is a collection of operations, which can be combined.
m Operads can reproduce fractals as fixed points of operations on C.
m But operads are much more flexible than fractals.
m They're not just about geometry and contraction mappings.
m Operads are the mathematics of modularity.

® Modules can be combined according to the operations in O.
m The result is a new module, ready to be further put in combination.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 6 /44



Introducing operads
Plan of the talk

m I'm leaving fractals aside; they were just motivation.

m | want to explain operads: how they might be interesting to scientists.
m Here's the plan:

m Discuss a better running example: recipes.

m Give the formal definition of operads.

m Provide a couple different examples: materials and networks.
m Conclude the talk.

m The main theme will be modularity:
m Building up complex systems by combining subsystems.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 7 /44



Outline

Operads and recipes
m The operadic nature of recipes
m Applying pure math

David I. Spivak (MIT) Operads for modular design

Presented on 2015/09/30

8/ 44



.
Recipes

Here's a recipe for impressing ones new friend:
m Invite them over.

m Prepare before they arrive.

m Make sure the house is clean.
m Cook a fancy dinner.

m Find a recipe that people say is good.
B Go to the store to get ingredients.
B Follow the recipe. [ltself a recipe... ]

m Think of a few things to talk about with the guests.
m When they arrive:
m Offer them a drink.

B Ask them what kind of drinks they like.
B Determine which of these can be made with ingredients.
B Follow the recipe. [ltself a recipe....]

m (etc.)
m (etc.)
David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30

9/ 44



Operads and recipes The operadic nature of recipes

What's operadic about recipes

A recipe is built out of steps which are themselves sub-recipes.

These sub-recipes can be done in series, or in parallel.
m It has to do with zooming and chunking.

m Can we zoom in forever and see recipes all the way down?

m Maybe, but that's not a necessary part of being an operad.

m What's necessary is that you can zoom out.

m You can put recipes together (series and parallel); the result is a recipe.

Put together a recipe for batter and one for frosting, and make a cake.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 10 / 44



Operads and recipes The operadic nature of recipes

A picture of a recipe

m On the left you see a recipe for Z.

m The steps are Yi,... Ys.
m Some have a specific order: step Y; must be done before Y;.

m Others don't: step Y4 can be done in any order with Y5 and Y.
m We can elaborate on the details of Y3, to see how it's implemented.
m Shown on the right: note it has the correct number of in/out ports.
m To substitute it on the left, replace module Y3 with Xi, X5, X3.

Presented on 2015/09/30 11 / 44

David I. Spivak (MIT) Operads for modular design



Operads and recipes The operadic nature of recipes

Example: a recipe for shakshuka

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 12 / 44



i Do mE
Category Theory

m Operads are a sub-discipline of category theory (CT).
m Since its invention in the 1940s, CT has revolutionized math.

m It is able to connect disparate disciplines into a unified framework.
m [t abstracts common themes from algebra, topology, and logic.
m It's the key to accessing the world of pure math.

m Category theory has been applied outside of math as well.

m Computer science (functional programming, databases),
m Physics (Feynman diagrams, quantum information theory).

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 13 / 44



Qe vl
Applied category theory

m Operads, like all of CT, was invented for its use in pure math.
m The notion of “modular systems” fits naturally into this framework.
m I'm speaking to you in the very early stages of this application.
m | don't yet know all the ways in which operads will be useful.
m But operads have demonstrated their power in pure math.
m And pure math has demonstrated its utility in science.
m Future progress will be driven by collaborations.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 14 / 44



Defining operads

Outline

Defining operads
m A framework for modularity
m Formal definition of operads
m Example of composition

Presented on 2015/09/30 15 / 44

David I. Spivak (MIT) Operads for modular design



Defining operads A framework for modularity

An operad is an “abstract modular environment”

m | will define operads formally in a few slides.
m An operad O is a framework for any sort of modularity.
m To specify O is to specify:

m The set of module types (or interfaces) you'll consider.

m The ways that modules can be put together to form larger ones.
m How nesting works. (Usually feels obvious, but it must be specified.)

m Recipes, as we discussed, fits this description:

m A module type is a box with input and output channels (ingredients).
m Boxes are put together by connecting ingredient supply to demand.
m Nesting is accomplished by expanding a step as a recipe of its own.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 16 / 44



Defining operads Formal definition of operads

What is an operad? An overview

m An operad consists of a few interlocking components, including:

A set of objects, a.k.a. module types, interfaces, or building blocks.
A set of morphisms, a.k.a., arrangements or building instructions.
A formula for composition, a.k.a, nesting or instruction composition.

m Objects, morphisms, and compositions are the heart and soul of CT.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 17 / 44



Formal definition of operad
An operad O consists of

A set Ob(0O), elements of which are called objects, or interfaces.
m For interfaces Xi,..., X, Y € Ob(Q), a set

Morp(Xi, ..., Xn Y)

Its elements are called morphisms or arrangements of Xi,..., X, in Y.
An arrangement ¢ € Morp (X, ..., Xs Y) may be denoted

o (Xi,...,X,) = Y.

m For each object X € Ob(Q), an identity arrangement idx: (X) — X

A composition, or nesting formula, e.g.,

Do (1s.-yon): (X)) D (Vi) S Z.

These are required to satisfy well-known “unital” and ‘“associative” laws.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 18 / 44



Defining operads Formal definition of operads

Another way to see it

m Often the objects in operad are shown as colors.
m The morphisms are many-input, one-output relationships.

m They can be composed:

X1
X1z
P4
Xi3 Xy
\{ Xia
z composes X1 z
to X
xL Y2 X21
2
X& P2

m Here, v represents an arrangement of a Y7 and a Y to make a Z.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 19 / 44



Defining operads Example of composition

Example: composition of networks

Xy
Xz 2
composes  Xis{ o)
to X,
X,

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 20 / 44



Defining operads Example of composition

Every context-free grammar (CFG) is an operad

The abstract modular environment of postal addresses:

1

(postal-address)
(name-part)

(personal-part)
(street-address)
(zip-part)
(opt-suffix-part)
(opt-apt-num)

(name-part) (street-address) (zip-part)
(personal-part) (last-name) (opt-suffix-part) (EOL)
(personal-part) (name-part)

(first-name)|(initial) "."

(house-num) (street-name) (opt-apt-num) (EOL)
(town-name) ", (state-code) (ZIP-code) (EOL)
"Sr. | "Jr.” | (roman-numeral) |

(apt-num) | "

nn

Everything in (brackets) is an object.

Each line is a morphism, usually called a “production rule”.

|
]
m Composition—nesting—of production rules is straightforward.
]

The usual interpretation of this CFG: strings and concatenations.

!Copied verbatim from Wikipedia page on Backus-Naur-Form:

David I. Spivak (MIT)

Operads for modular design Presented on 2015/09/30

21 / 44



Defining operads Example of composition

The operad of sets

Recall the category Set: objects are sets, morphisms are functions.
Also, for any n sets Xi,..., X, there is a product set X1 x --- x X,.

Definition
The operad Sets is defined by
m Ob(Sets) = Ob(Set)
B Morgets(X1, ..., Xn; Y) = Morget (X1 X -+ x Xy, Y)
m Identity and composition are straightforward and well-known.

This construction works for any monoidal category, not just (Set, 1, x).

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 22 / 44



Defining operads Example of composition

Operad functors and operad algebras

Let O and O’ be operads.

Definition

An operad functor F: O — O’ consists of:
m a function F: Ob(O) — Ob(O"),
m for objects Xi,...,X,, Y, a function

F: Morp(Xi,..., Xn Y) = Moro/(FXi,...,FXy; FY).

m These two functions should respect identity and composition.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30

23 / 44



Defining operads Example of composition

Operad functors and operad algebras

Let O and O’ be operads.

Definition

An operad functor F: O — O’ consists of:
m a function F: Ob(O) — Ob(O"),
m for objects Xi,...,X,, Y, a function

F: Morp(Xi,..., Xn Y) = Moro/(FXi,...,FXy; FY).

m These two functions should respect identity and composition.

Definition
An operad functor F: O — Sets is called an O-algebra.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30



Defining operads Example of composition

Operads and algebras = syntax and semantics

Throughout this talk we'll have:

m An operad O governing the types and constructions,

m The objects and morphisms of O.

m | might call them building block types and building instructions.
And an algebra X: O — Set.

m It'll tell us the set of building blocks of each type.
® And how to build new ones by applying instructions.

For example, if C is a context-free grammar

m What people call an “attribute grammar” is a C-algebra.
m Attribute grammars have been used in design, e.g., shape grammars.

An operad O is just a (possibly infinite) CFG with equations.

An O-algebra can be thought of as an attribute grammar on O.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 24 / 44



Outline

A Applications of operads
m Potential domains of application
m Materials architecture

David I. Spivak (MIT) Operads for modular design

Presented on 2015/09/30

25 / 44



Applications of operads Potential domains of application

Potential domains of application

Operads might organize how we think about a variety of applied problems:
m Potential applications to:
m Manufacturing processes,
m Signaling networks in systems biology,
m Neural circuits.
m A successful collaboration: applying operads in materials science.
m Plan for remainder of talk:

m We'll switch gears and discuss the materials case in some detail.
m Then we'll wind down with networks.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 26 / 44



Applications of operads Materials architecture

A tool for producing hierarchical protein materials

m Bio-inspired design of hierarchical protein materials.
m Materials such as silk and collagen have excellent properties.
m We want to modify their structure, e.g, to make them heat resistant.
m Scientists do so by simulating the structures using molecular dynamics.
m The process for simulating hierarchical protein materials is tedious.

m Because it's such a new field, there is a lack of organization.
m People program amino-acid placement by hand.
m Compromise equilibration-time efficiency for programming efficiency.

m We developed a tool for creating hierarchical protein materials.

m It is called Matriarch, standing for materials architecture.

m And (of course) it is based on operads.

http://web.mit.edu/matriarch/

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 27 / 44


http://web.mit.edu/matriarch/

Applications of operads Materials architecture

The operadic model of Matriarch

Let's describe the operad M for Matriarch.

m The objects (building blocks) in M are proteins.
m These start with amino acids, but include everything you can build.
m They are differentiated according to their bondable interface.

m The morphisms (building instructions) in M are commands such as:
m l-ary: reverse, rigidMotion, twist,
m 2-ary: attach, space, overlay,
m n-ary: makeArray, attachSeries, spaceSeries.
m Compositions: helix, collagen — these are nested operations.

m The composition (nesting) is straightforward.

® You keep building materials of higher and higher complexity.
m And then putting the results together (using the above commands).
m The result is a new building block of higher complexity.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 28 / 44



Applications of operads Materials architecture

Sample architectures

Strand1 = chain(seq1) Worm = twist(attachSeries(TH,5), W)

e S Eﬁz&;w A 'Kt'

Hel1 = helix(Strand1, 1.0, 5.0)
s T

TH = collagen(Strand1, Strand2)

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30

29 / 44



Applications of operads Materials architecture

Example of materials architecture: collagen

m Collagen is the most common protein in mammals.

m Its design is hierarchical.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 30 / 44



Applications of operads Materials architecture

Example of materials architecture: collagen

m A fibril of collagen is an array of tropocollagen molecules.

m Each molecule of tropocollagen is a right-handed triple helix.

m Each of its three strands is a left-handed helix.

m Each of these individual helices is a chain of many amino acids.
1 e ; e ) <~A~(A{ «.L;"

ERs
N7 ¢
e are

T ; 7‘
al = chain(seql)
a2 = chain(seq2)
hell = helix(al, rad=1.5, pitch=9.5, handed=L)
hel2 = helix(a2, rad=1.5, pitch=9.5, handed=L)
helhell = helix(hell, rad=4, pitch=85, handed=R)
helhel2 = helix(hel2, rad=4, pitch=85, handed=R)
helhellrot = rigidMotion(heIheIl, rotate=120, shift:2.8)
helhel2rot = rigidMotion(helhel2, rotate=240, shift=-5.6)
tropocollagen = overlay(helhell, helhellrot, helhel2rot)
collagen = makeArray(tropocollagen,1000,1000,distance=8.1)

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 30 / 44



LD LS
Matriarch as a design tool

attachSeries(helix(seq, rad=4, pitch=85), copies = 10)

m We already said:

m With Matriarch, it is easy to adjust protein material architecture.
m Equilibration times are drastically reduced.
m The equilibration is controlled: no wrong foldings.

m Just as important: The result is a human-understandable structure.
m A set of descriptive commands to synthesize the material.
m “Carve nature at its joints.”
m This, instead of a list of atomic coordinates, or a prose description.
m Provides a good position from which to consider material design.

m Note: this includes parametric design, but not limited to it.
m One optimizes a given product (“what’s the best seq, rad, pitch?")
m But hierarchical continuation is key: use it as a part in a bigger whole.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 31/ 44



DIz e
What did operads really do for us?

m Operads provided a design framework.
m The Matriarch operad served as software specification for the program.
m It efficiently translated user requirements into functional requirements.
m Later change requests were easy to implement: the formalism is flexible.
m Category theory as a mathematical software specification.

m The Matriarch program itself is neither exceptional nor unusual.
m The operad / algebra formalism can serve as a mathematical standard.
m It fits a wide range of applications.

m What might be new: operad functors

m Functors as formal translators between different design environments.
m Operadically-designed tools can be linked using such functors.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 32 /44



Networks of networks

Outline

H Networks of networks
m A zoo of operads
m Different wiring diagram operads
m Semantics of wiring diagrams
m Databases and circuits

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 33 /44



Networks of networks A zoo of operads

A zoo of operads

m There's a whole zoo of operads—uvery different animals.

m The operad of networks looks pretty different from that of materials.
m One involved wiring diagrams, the other involved attach and twist.

m The reason is that operads are just the rules of modularity.

m If you can tell me your interfaces, arrangements, and nesting,
m you probably have an operad.
® Modularity is a very general phenomenon; it takes on many forms.

m Luckily, unlike in zoology, we have an excellent formalism for
comparing these animals.

m Comparing things is what category theory is all about.

m Even just for wiring diagrams, there's an interrelated sub-zoo.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 34 /44



Networks of networks Different wiring diagram operads

Directed wiring diagrams are modular

Interfaces Arrangements Nesting

(JE]

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 35 /44



Networks of networks Different wiring diagram operads

And another: wiring diagrams without feedback

Interfaces Arrangements Nesting

LJE

(Getting a sense of how
fractals are a special case?)

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 36 / 44



Networks of networks

Different wiring diagram operads

Another modular notion of wiring diagram

Interfaces

Arrangements

Nesting

TQQ

David I. Spivak (MIT)

S
5

@@

&

Operads for modular design Presented on 2015/09/30

37 / 44



Networks of networks Different wiring diagram operads

5

m Two operads, S and T, whose morphisms look like wiring diagrams.

® I'm hiding the actual mathematical definitions of these operads.
m But these pictures correspond to formal mathematical objects.

m There is an operad functor 7 — S.
m Basically, this is done by turning rectangles to circles.
m For example, the diagram on the left becomes that on the right.
m Every object and morphism in T turns into one in S.
m This means the semantics of S can be imported to 7.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 38 / 44



Networks of networks Databases and circuits

Databases

Here's how to use the “circle” operad to design database queries.

B G

“all pairs of integers (X,Y) ¢ “all pairs of integers ¢ “all perfect squares Z*
whose product is 9” i (X,Z) inwhich Zis :
i divisible by X.”

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 39 /44



Networks of networks Databases and circuits

Electrical circuits

2

m Same kind of diagram;* very different semantics.

v(2)

m See Baez and Fong: http://arxiv.org/pdf/1504.05625v1 . pdf.

2Drawn by: Ramén Jaramillo. http://www.texample.net/tikz/examples/noise-shaper/

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 40 / 44


http://arxiv.org/pdf/1504.05625v1.pdf
http://www.texample.net/tikz/examples/noise-shaper/

Networks of networks Databases and circuits

Open dynamical systems

A
C
B

Let inp and outp be manifolds. (In the above, think: inp = A x B and
outp = C.)

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 41 / 44



Networks of networks Databases and circuits

Open dynamical systems

A
C
B

Let inp and outp be manifolds. (In the above, think: inp = A x B and
outp = C.)

Definition
An (inp, outp)-dynamical system X = (Q, f, g) consists of
m a manifold Q, called the state manifold of X,

® an equation %—? = f(Q, inp), where f is smooth, the control
function,

® an equation outp := g(Q), where g is smooth, the readout function.

v

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 41 / 44



Networks of networks Databases and circuits

Open dynamical systems

b = g15(Q1)
d = g14(Q1)

8
{éil = f(Q1, ¢, af

Definition
An (inp, outp)-dynamical system X = (Q, f, g) consists of
m a manifold Q, called the state manifold of X,
® an equation %—? = f(Q, inp), where f is smooth, the control
function,

® an equation outp := g(Q), where g is smooth, the readout function.

v

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 41 / 44



Networks of networks Databases and circuits

A matriarch-style program for dynamical systems

m Example: your computer is a dynamical system.
m Instead of amino acids, it's built from transistors.
m A computer’s complexity is found in the arrangement of transistors.
m To get there, you make logic gates, adder circuits, registers, etc.

m What can you do with the operad for arranging dynamical systems?
m Put together dynamical systems as components of larger system.
m For example, Simulink, Modelica, etc.
m The operad would be a mathematical (“open source”) language.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 42 / 44



Outline

[@ Conclusion

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 43 / 44



Conclusion

Conclusion

m Somehow, the human brain handles a huge range of problems.

m Planning a wedding or a space mission.

m Assembling lkea furniture or architecting a house.

m Understanding societies, or individual biology or psychology.
m In each case, the understanding comes from putting pieces together.
m There is a certain principle at work across many scales and domains.

m Each system emerges out of interactions among its parts.
m Parts can be chunked into sub-systems, which are again parts.

m Operads provide a language in which to consider such issues.

m As a mathematical language, it can serve as a standard.
m Many incarnations: many modular environments = many operads.
m Functors provide translations between modular environments.

Thank you!

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 44 / 44



	Introduction
	Motivation
	Introducing operads

	Operads and recipes
	The operadic nature of recipes
	Applying pure math

	Defining operads
	A framework for modularity
	Formal definition of operads
	Example of composition

	Applications of operads
	Potential domains of application
	Materials architecture

	Networks of networks
	A zoo of operads
	Different wiring diagram operads
	Semantics of wiring diagrams
	Databases and circuits

	Conclusion

