
Operadics: the mathematics of modular design

David I. Spivak

dspivak@math.mit.edu

Mathematics Department
Massachusetts Institute of Technology

Presented on 2015/09/30

at NIST

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 1 / 44

dspivak@math.mit.edu


Outline

1 Introduction

2 Operads and recipes

3 Defining operads

4 Applications of operads

5 Networks of networks

6 Conclusion

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 2 / 44



Introduction

Outline

1 Introduction
Motivation
Introducing operads

2 Operads and recipes

3 Defining operads

4 Applications of operads

5 Networks of networks

6 Conclusion

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 3 / 44



Introduction Motivation

The promise of fractals

I recall my father telling me about a kind of “fractal fever”.

In the 1980s scientists were very interested in fractals, e.g., in:

Plants (a single leaf or broccoli).
Rivers, faults, and vasculature.
Stock market fluctuations.

Scientists wanted to use fractals as a conceptual tool for explaining
phenomena.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 4 / 44



Introduction Motivation

It didn’t quite work for everyone; why?

Fractals are a little too special: the machinery is too limited.

Scientists for whom the analogy was compelling couldn’t always
produce:

shapes with fractional dimension,
patterns that repeat no matter how far you zoom in,
iterated functions or recurrence relations to generate their phenomena.

Fractals are always about space and geometry.

The inspirational and compelling idea wasn’t completely realized.

Unlike fractals, the cases of interest weren’t always geometric objects.
Example: heredity and evolution occur hierarchically, but not spacially.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 5 / 44



Introduction Introducing operads

Operads describe similar phenomena

I believe the promise of fractals may still be realized by operads.

By “the promise of fractals” I roughly mean:

a mathematical formalism for understanding self-similarity across scales.

An operad O is a collection of operations, which can be combined.

Operads can reproduce fractals as fixed points of operations on C.
But operads are much more flexible than fractals.
They’re not just about geometry and contraction mappings.

Operads are the mathematics of modularity.

Modules can be combined according to the operations in O.
The result is a new module, ready to be further put in combination.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 6 / 44



Introduction Introducing operads

Plan of the talk

I’m leaving fractals aside; they were just motivation.

I want to explain operads: how they might be interesting to scientists.

Here’s the plan:

Discuss a better running example: recipes.
Give the formal definition of operads.
Provide a couple different examples: materials and networks.
Conclude the talk.

The main theme will be modularity:

Building up complex systems by combining subsystems.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 7 / 44



Operads and recipes

Outline

1 Introduction

2 Operads and recipes
The operadic nature of recipes
Applying pure math

3 Defining operads

4 Applications of operads

5 Networks of networks

6 Conclusion

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 8 / 44



Operads and recipes The operadic nature of recipes

Recipes

Here’s a recipe for impressing ones new friend:

Invite them over.

Prepare before they arrive.

Make sure the house is clean.
Cook a fancy dinner.

Find a recipe that people say is good.
Go to the store to get ingredients.
Follow the recipe. [Itself a recipe....]

Think of a few things to talk about with the guests.

When they arrive:
Offer them a drink.

Ask them what kind of drinks they like.
Determine which of these can be made with ingredients.
Follow the recipe. [Itself a recipe....]

(etc.)

(etc.)

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 9 / 44



Operads and recipes The operadic nature of recipes

What’s operadic about recipes

A recipe is built out of steps which are themselves sub-recipes.

These sub-recipes can be done in series, or in parallel.

It has to do with zooming and chunking.

Can we zoom in forever and see recipes all the way down?
Maybe, but that’s not a necessary part of being an operad.
What’s necessary is that you can zoom out.
You can put recipes together (series and parallel); the result is a recipe.

Put together a recipe for batter and one for frosting, and make a cake.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 10 / 44



Operads and recipes The operadic nature of recipes

A picture of a recipe

On the left you see a recipe for Z .

The steps are Y1, . . .Y6.

Some have a specific order: step Y1 must be done before Y3.
Others don’t: step Y4 can be done in any order with Y5 and Y6.

We can elaborate on the details of Y3, to see how it’s implemented.

Shown on the right: note it has the correct number of in/out ports.
To substitute it on the left, replace module Y3 with X1,X2,X3.

X1

X2

X3

Y3Y1

Y2

Y3

Y4

Y5 Y6

Z

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 11 / 44



Operads and recipes The operadic nature of recipes

Example: a recipe for shakshuka

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 12 / 44



Operads and recipes Applying pure math

Category Theory

Operads are a sub-discipline of category theory (CT).

Since its invention in the 1940s, CT has revolutionized math.

It is able to connect disparate disciplines into a unified framework.
It abstracts common themes from algebra, topology, and logic.
It’s the key to accessing the world of pure math.

Category theory has been applied outside of math as well.

Computer science (functional programming, databases),
Physics (Feynman diagrams, quantum information theory).

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 13 / 44



Operads and recipes Applying pure math

Applied category theory

Operads, like all of CT, was invented for its use in pure math.

The notion of “modular systems” fits naturally into this framework.

I’m speaking to you in the very early stages of this application.

I don’t yet know all the ways in which operads will be useful.
But operads have demonstrated their power in pure math.
And pure math has demonstrated its utility in science.

Future progress will be driven by collaborations.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 14 / 44



Defining operads

Outline

1 Introduction

2 Operads and recipes

3 Defining operads
A framework for modularity
Formal definition of operads
Example of composition

4 Applications of operads

5 Networks of networks

6 Conclusion
David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 15 / 44



Defining operads A framework for modularity

An operad is an “abstract modular environment”

I will define operads formally in a few slides.

An operad O is a framework for any sort of modularity.

To specify O is to specify:

The set of module types (or interfaces) you’ll consider.
The ways that modules can be put together to form larger ones.
How nesting works. (Usually feels obvious, but it must be specified.)

Recipes, as we discussed, fits this description:

A module type is a box with input and output channels (ingredients).
Boxes are put together by connecting ingredient supply to demand.
Nesting is accomplished by expanding a step as a recipe of its own.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 16 / 44



Defining operads Formal definition of operads

What is an operad? An overview

An operad consists of a few interlocking components, including:

1 A set of objects, a.k.a. module types, interfaces, or building blocks.
2 A set of morphisms, a.k.a., arrangements or building instructions.
3 A formula for composition, a.k.a, nesting or instruction composition.

Objects, morphisms, and compositions are the heart and soul of CT.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 17 / 44



Defining operads Formal definition of operads

Formal definition of operad

An operad O consists of

A set Ob(O), elements of which are called objects, or interfaces.

For interfaces X1, . . . ,Xn,Y ∈ Ob(O), a set

MorO(X1, . . . ,Xn;Y )

Its elements are called morphisms or arrangements of X1, . . . ,Xn in Y .
An arrangement ϕ ∈ MorO(X1, . . . ,Xn;Y ) may be denoted

ϕ : (X1, . . . ,Xn)→ Y .

For each object X ∈ Ob(O), an identity arrangement idX : (X )→ X

A composition, or nesting formula, e.g.,

ψ ◦ (ϕ1, . . . , ϕn) : (Xi ,j)
ϕi−→ (Yi )

ψ−→ Z .

These are required to satisfy well-known “unital” and “associative” laws.
David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 18 / 44



Defining operads Formal definition of operads

Another way to see it

Often the objects in operad are shown as colors.

The morphisms are many-input, one-output relationships.

They can be composed:

𝜑1 

X11 

X12 

X13 
Y1 

Y2 

𝜓 Z 

𝜑2 X22 

X21 

Z 

X11 

X12 

X13 

X22 

X21 

𝜓⚬(𝜑1,𝜑2) composes 
to 

Here, ψ represents an arrangement of a Y1 and a Y2 to make a Z .

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 19 / 44



Defining operads Example of composition

Example: composition of networks

X11

X12

X13

Y1

X21

X22

Y2

Z

𝜑1 

X11 

X12 

X13 
Y1 

Y2 

𝜓 Z 

𝜑2 X22 

X21 

Z 

X11 

X12 

X13 

X22 

X21 

𝜓⚬(𝜑1,𝜑2) composes 
to 

X11

X12

X13

X21

X22

Z

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 20 / 44



Defining operads Example of composition

Every context-free grammar (CFG) is an operad

The abstract modular environment of postal addresses: 1

〈postal-address〉 ::= 〈name-part〉 〈street-address〉 〈zip-part〉
〈name-part〉 ::= 〈personal-part〉 〈last-name〉 〈opt-suffix-part〉 〈EOL〉

| 〈personal-part〉 〈name-part〉
〈personal-part〉 ::= 〈first-name〉|〈initial〉 ”.”
〈street-address〉 ::= 〈house-num〉 〈street-name〉 〈opt-apt-num〉 〈EOL〉

〈zip-part〉 ::= 〈town-name〉 ”,” 〈state-code〉 〈ZIP-code〉 〈EOL〉
〈opt-suffix-part〉 ::= ”Sr.” | ”Jr.” | 〈roman-numeral〉 | ””
〈opt-apt-num〉 ::= 〈apt-num〉 | ””

Everything in 〈brackets〉 is an object.

Each line is a morphism, usually called a “production rule”.

Composition—nesting—of production rules is straightforward.

The usual interpretation of this CFG: strings and concatenations.

1Copied verbatim from Wikipedia page on Backus-Naur Form.
David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 21 / 44



Defining operads Example of composition

The operad of sets

Recall the category Set: objects are sets, morphisms are functions.
Also, for any n sets X1, . . . ,Xn, there is a product set X1 × · · · × Xn.

Definition

The operad Sets is defined by

Ob(Sets) = Ob(Set)

MorSets(X1, . . . ,Xn;Y ) = MorSet(X1 × · · · × Xn,Y )

Identity and composition are straightforward and well-known.

This construction works for any monoidal category, not just (Set, 1,×).

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 22 / 44



Defining operads Example of composition

Operad functors and operad algebras

Let O and O′ be operads.

Definition

An operad functor F : O → O′ consists of:

a function F : Ob(O)→ Ob(O′),

for objects X1, . . . ,Xn,Y , a function

F : MorO(X1, . . . ,Xn;Y )→ MorO′(FX1, . . . ,FXn;FY ).

These two functions should respect identity and composition.

Definition

An operad functor F : O → Sets is called an O-algebra.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 23 / 44



Defining operads Example of composition

Operad functors and operad algebras

Let O and O′ be operads.

Definition

An operad functor F : O → O′ consists of:

a function F : Ob(O)→ Ob(O′),

for objects X1, . . . ,Xn,Y , a function

F : MorO(X1, . . . ,Xn;Y )→ MorO′(FX1, . . . ,FXn;FY ).

These two functions should respect identity and composition.

Definition

An operad functor F : O → Sets is called an O-algebra.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 23 / 44



Defining operads Example of composition

Operads and algebras = syntax and semantics

Throughout this talk we’ll have:

An operad O governing the types and constructions,

The objects and morphisms of O.
I might call them building block types and building instructions.

And an algebra X : O → Set.

It’ll tell us the set of building blocks of each type.
And how to build new ones by applying instructions.

For example, if C is a context-free grammar

What people call an “attribute grammar” is a C-algebra.
Attribute grammars have been used in design, e.g., shape grammars.

An operad O is just a (possibly infinite) CFG with equations.

An O-algebra can be thought of as an attribute grammar on O.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 24 / 44



Applications of operads

Outline

1 Introduction

2 Operads and recipes

3 Defining operads

4 Applications of operads
Potential domains of application
Materials architecture

5 Networks of networks

6 Conclusion

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 25 / 44



Applications of operads Potential domains of application

Potential domains of application

Operads might organize how we think about a variety of applied problems:

Potential applications to:

Manufacturing processes,
Signaling networks in systems biology,
Neural circuits.

A successful collaboration: applying operads in materials science.

Plan for remainder of talk:

We’ll switch gears and discuss the materials case in some detail.
Then we’ll wind down with networks.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 26 / 44



Applications of operads Materials architecture

A tool for producing hierarchical protein materials

Bio-inspired design of hierarchical protein materials.

Materials such as silk and collagen have excellent properties.
We want to modify their structure, e.g, to make them heat resistant.
Scientists do so by simulating the structures using molecular dynamics.

The process for simulating hierarchical protein materials is tedious.

Because it’s such a new field, there is a lack of organization.
People program amino-acid placement by hand.
Compromise equilibration-time efficiency for programming efficiency.

We developed a tool for creating hierarchical protein materials.

It is called Matriarch, standing for materials architecture.

And (of course) it is based on operads.

http://web.mit.edu/matriarch/

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 27 / 44

http://web.mit.edu/matriarch/


Applications of operads Materials architecture

The operadic model of Matriarch

Let’s describe the operad M for Matriarch.

The objects (building blocks) in M are proteins.

These start with amino acids, but include everything you can build.
They are differentiated according to their bondable interface.

The morphisms (building instructions) in M are commands such as:

1-ary: reverse, rigidMotion, twist,
2-ary: attach, space, overlay,
n-ary: makeArray, attachSeries, spaceSeries.
Compositions: helix, collagen — these are nested operations.

The composition (nesting) is straightforward.

You keep building materials of higher and higher complexity.
And then putting the results together (using the above commands).
The result is a new building block of higher complexity.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 28 / 44



Applications of operads Materials architecture

Sample architectures

Strand1 = chain(seq1) 

Hel1 = helix(Strand1, 1.0, 5.0) 

TH = collagen(Strand1, Strand2) 

Worm = twist(attachSeries(TH,5), W) 
a 

b 

c 

d 

e 
Apple = twist(Strand3, SSFunc) 

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 29 / 44



Applications of operads Materials architecture

Example of materials architecture: collagen

Collagen is the most common protein in mammals.

Its design is hierarchical.

a1 = chain(seq1)
a2 = chain(seq2)
hel1 = helix(a1, rad=1.5, pitch=9.5, handed=L)
hel2 = helix(a2, rad=1.5, pitch=9.5, handed=L)
helhel1 = helix(hel1, rad=4, pitch=85, handed=R)
helhel2 = helix(hel2, rad=4, pitch=85, handed=R)
helhel1rot = rigidMotion(helhel1, rotate=120, shift=2.8)
helhel2rot = rigidMotion(helhel2, rotate=240, shift=-5.6)
tropocollagen = overlay(helhel1, helhel1rot, helhel2rot)
collagen = makeArray(tropocollagen,1000,1000,distance=8.1)

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 30 / 44



Applications of operads Materials architecture

Example of materials architecture: collagen

A fibril of collagen is an array of tropocollagen molecules.

Each molecule of tropocollagen is a right-handed triple helix.

Each of its three strands is a left-handed helix.

Each of these individual helices is a chain of many amino acids.

a1 = chain(seq1)
a2 = chain(seq2)
hel1 = helix(a1, rad=1.5, pitch=9.5, handed=L)
hel2 = helix(a2, rad=1.5, pitch=9.5, handed=L)
helhel1 = helix(hel1, rad=4, pitch=85, handed=R)
helhel2 = helix(hel2, rad=4, pitch=85, handed=R)
helhel1rot = rigidMotion(helhel1, rotate=120, shift=2.8)
helhel2rot = rigidMotion(helhel2, rotate=240, shift=-5.6)
tropocollagen = overlay(helhel1, helhel1rot, helhel2rot)
collagen = makeArray(tropocollagen,1000,1000,distance=8.1)

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 30 / 44



Applications of operads Materials architecture

Matriarch as a design tool

attachSeries
(
helix(seq, rad=4, pitch=85), copies = 10

)
We already said:

With Matriarch, it is easy to adjust protein material architecture.
Equilibration times are drastically reduced.
The equilibration is controlled: no wrong foldings.

Just as important: The result is a human-understandable structure.

A set of descriptive commands to synthesize the material.
“Carve nature at its joints.”
This, instead of a list of atomic coordinates, or a prose description.
Provides a good position from which to consider material design.

Note: this includes parametric design, but not limited to it.

One optimizes a given product (“what’s the best seq, rad, pitch?”)
But hierarchical continuation is key: use it as a part in a bigger whole.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 31 / 44



Applications of operads Materials architecture

What did operads really do for us?

Operads provided a design framework.

The Matriarch operad served as software specification for the program.
It efficiently translated user requirements into functional requirements.
Later change requests were easy to implement: the formalism is flexible.

Category theory as a mathematical software specification.

The Matriarch program itself is neither exceptional nor unusual.
The operad / algebra formalism can serve as a mathematical standard.
It fits a wide range of applications.

What might be new: operad functors

Functors as formal translators between different design environments.
Operadically-designed tools can be linked using such functors.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 32 / 44



Networks of networks

Outline

1 Introduction

2 Operads and recipes

3 Defining operads

4 Applications of operads

5 Networks of networks
A zoo of operads
Different wiring diagram operads
Semantics of wiring diagrams
Databases and circuits

6 ConclusionDavid I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 33 / 44



Networks of networks A zoo of operads

A zoo of operads

There’s a whole zoo of operads—very different animals.

The operad of networks looks pretty different from that of materials.
One involved wiring diagrams, the other involved attach and twist.

The reason is that operads are just the rules of modularity.

If you can tell me your interfaces, arrangements, and nesting,
you probably have an operad.
Modularity is a very general phenomenon; it takes on many forms.

Luckily, unlike in zoology, we have an excellent formalism for
comparing these animals.

Comparing things is what category theory is all about.

Even just for wiring diagrams, there’s an interrelated sub-zoo.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 34 / 44



Networks of networks Different wiring diagram operads

Directed wiring diagrams are modular

Interfaces Arrangements Nesting

f g

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 35 / 44



Networks of networks Different wiring diagram operads

And another: wiring diagrams without feedback

Interfaces Arrangements Nesting

X11

X12

X13

Y1

(Getting a sense of how
fractals are a special case?)

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 36 / 44



Networks of networks Different wiring diagram operads

Another modular notion of wiring diagram

Interfaces Arrangements Nesting

A 

A B 

A 

B 

A 

A 

B 

C 

D 

E 

F 
=	
  

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 37 / 44



Networks of networks Different wiring diagram operads

A 

B 

C 

D 

E 

F 

Two operads, S and T , whose morphisms look like wiring diagrams.

I’m hiding the actual mathematical definitions of these operads.
But these pictures correspond to formal mathematical objects.

There is an operad functor T → S.

Basically, this is done by turning rectangles to circles.
For example, the diagram on the left becomes that on the right.
Every object and morphism in T turns into one in S.
This means the semantics of S can be imported to T .

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 38 / 44



Networks of networks Databases and circuits

Databases

Here’s how to use the “circle” operad to design database queries.

Z = 9X ∗Y = Z
Z

Y

X

“all pairs of integers (X,Y) 
whose product is 9” 

X ∗Y = Z
Z

Y

X

“all pairs of integers 
(X,Z) in which Z is 
divisible by X.” 

X ∗Y = Z
Z

Y

X

“all perfect squares Z” 

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 39 / 44



Networks of networks Databases and circuits

Electrical circuits

Same kind of diagram;2 very different semantics.

◦ +
∫

Q1

T1

X (Z )

+

+
∫

+
∫

Q2

T2

+

d
dt

Y (Z )
•

•

•

•

•

first-order noise shaper

second-order noise shaper

See Baez and Fong: http://arxiv.org/pdf/1504.05625v1.pdf.

2Drawn by: Ramón Jaramillo. http://www.texample.net/tikz/examples/noise-shaper/

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 40 / 44

http://arxiv.org/pdf/1504.05625v1.pdf
http://www.texample.net/tikz/examples/noise-shaper/


Networks of networks Databases and circuits

Open dynamical systems

?
A

B

C

Let inp and outp be manifolds. (In the above, think: inp = A× B and
outp = C .)

Definition

An (inp, outp)-dynamical system X = (Q, f , g) consists of

a manifold Q, called the state manifold of X ,

an equation ∂Q
∂t := f (Q, inp), where f is smooth, the control

function,

an equation outp := g(Q), where g is smooth, the readout function.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 41 / 44



Networks of networks Databases and circuits

Open dynamical systems

?
A

B

C

Let inp and outp be manifolds. (In the above, think: inp = A× B and
outp = C .)

Definition

An (inp, outp)-dynamical system X = (Q, f , g) consists of

a manifold Q, called the state manifold of X ,

an equation ∂Q
∂t := f (Q, inp), where f is smooth, the control

function,

an equation outp := g(Q), where g is smooth, the readout function.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 41 / 44



Networks of networks Databases and circuits

Open dynamical systems


∂Q1
∂t

= f1(Q1, c, a)

b = g1b(Q1)

d = g1d (Q1)

{
∂Q2
∂t

= f2(Q2, b)

c = g2(Q2)

C

A

B

D

C

Definition

An (inp, outp)-dynamical system X = (Q, f , g) consists of

a manifold Q, called the state manifold of X ,

an equation ∂Q
∂t := f (Q, inp), where f is smooth, the control

function,

an equation outp := g(Q), where g is smooth, the readout function.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 41 / 44



Networks of networks Databases and circuits

A matriarch-style program for dynamical systems

Example: your computer is a dynamical system.

Instead of amino acids, it’s built from transistors.
A computer’s complexity is found in the arrangement of transistors.
To get there, you make logic gates, adder circuits, registers, etc.

What can you do with the operad for arranging dynamical systems?

Put together dynamical systems as components of larger system.
For example, Simulink, Modelica, etc.
The operad would be a mathematical (“open source”) language.

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 42 / 44



Conclusion

Outline

1 Introduction

2 Operads and recipes

3 Defining operads

4 Applications of operads

5 Networks of networks

6 Conclusion

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 43 / 44



Conclusion

Conclusion

Somehow, the human brain handles a huge range of problems.

Planning a wedding or a space mission.
Assembling Ikea furniture or architecting a house.
Understanding societies, or individual biology or psychology.

In each case, the understanding comes from putting pieces together.

There is a certain principle at work across many scales and domains.

Each system emerges out of interactions among its parts.
Parts can be chunked into sub-systems, which are again parts.

Operads provide a language in which to consider such issues.

As a mathematical language, it can serve as a standard.
Many incarnations: many modular environments = many operads.
Functors provide translations between modular environments.

Thank you!

David I. Spivak (MIT) Operads for modular design Presented on 2015/09/30 44 / 44


	Introduction
	Motivation
	Introducing operads

	Operads and recipes
	The operadic nature of recipes
	Applying pure math

	Defining operads
	A framework for modularity
	Formal definition of operads
	Example of composition

	Applications of operads
	Potential domains of application
	Materials architecture

	Networks of networks
	A zoo of operads
	Different wiring diagram operads
	Semantics of wiring diagrams
	Databases and circuits

	Conclusion

