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Outline

I’ll discuss

Overall design concept for a computer algebra and modelling
system based on computational category theory

Some necessary component algorithms:
I Determining equality for morphism terms,
I Related aspects of normal forms and rewriting (such as finding

tree decompositions), and
I Categorically-formulated belief propagation, a common

generalization of algorithms used for many types of models.

Status of Cateno: pre-alpha software, looking for “customers”
and collaborators
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Motivation

Goal: build a practical computer algebra system for computational
(monoidal) category theory. It should be able to:

1 manipulate abstract categorical quantities such as morphism
terms in a REPL.

2 compile/lower code expressed categorically to an efficient
implementation in a particular category (e.g. numerical linear
algebra, (probabilistic) databases, quantum simulation, belief
networks).

3 scale to be useful for practical computational problems in
modeling uncertainty in data analysis, statistics, physics,
computer science.
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Motivation (modelers)

Goal: Abstractions and engine to quickly build performant, modular
models of uncertainty. It should be able to:

Ingest qualitative domain knowlege expressed with flow
charts/diagrams from non-programmers

Attach multiple competing quantitative explanations (e.g.
probabilistic, differential equation, discrete dynamical) and test
them

Port algorithms, using best solution in each component (e.g.
tree decomposition)

Scale to useful size

Pay only a small abstraction cost in final assembly program.
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Want something like REPLs for linear or

commutative algebra

In a computer algebra systems such as Macaulay2, Singular, Maple,
Mathematica, we:

tell the computer the context, e.g. polynomial ring

R = Q[x , y ] , and

type in an expression such as x2 + 3xy + (x + y)2.

The system performs some simplification according to the
axioms of a free polynomial ring (or more generally, a Gröbner
basis computation in a quotient ring R = Q[x , y ]/I ), and

displays something like 2x2 + 5xy + y 2, element of R .

Even something this trivial requires some thought for
computational category theory!
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Want something like MATLAB, NumPy, R
But that:

allows a higher level of abstraction in describing algorithms,

can handle more types of “data” than matrices of floats or
probability distributions, and

treats morphism expressions as first class to enable rewriting,
syntax tricks

Absurd Claim: Computational category theory is the numerical linear
algebra of the 21st century.

Now: reducing an applied math problem to numerical linear
algebra means you can solve it using BLAS, LAPACK primitives,
matrix decompositions, etc.

Future: reduce your uncertainty/information-processing applied
math problem to (computational) category theory, solve it using
generic engines and libraries with matching abstractions.
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Design Principles

Today: some design principles toward such a system.

Can be implemented in any programming language with suitable
features.

I Needed are typeclasses/traits/interfaces and, for performance, a
means for zero or low cost abstraction

I so JIT and AOT languages with modern type systems are
preferred

I building in Julia, exploring Scala, Rust, maybe Python (what
would you use?)

Typeclasses/Traits represent doctrines: monoidal category,
compact closed category, well-supported compact closed
category, . . . and describe the common interface available to
manipulate terms in any particular category
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Design Principles
Everything the computer does is represented as one of five modular
components:

a doctrine (e.g. “compact closed category”)

an instance or implementation of a doctrine (e.g. matrices or
relations as CCC):

I a morphism term or word (e.g. f ⊗ (g ◦ δA ◦ h)) in a free
language, or

I a concrete value in an implementation (e.g.

(
1 3
4 5

)
)

a representation (an X -functor) between implementations (usu.

free → concrete, e.g. a binding f =

(
1 3
4 5

)
for each symbol)

algorithms are expressed in terms of the defining methods of the
doctrine (e.g. ⊗, δ, µ, bind, return) or operadically

From the modeling perspective:
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Morphism Term: a human-readable qualitative model,
captured by a labeled generalized graph; fixes the relationships,
suggests qualitative rules and syntax of the model

Doctrine: formal categorical syntax constraining the
quantitative models of uncertainty that can be attached, rewrite
rules, available constructions

Value: a machine-processed quantitative model in which the
graph is interpreted and the data summarized, e.g. probab-
ilistically as a Bayesian network, in Hilbert space for a quantum
circuit, or with rate constants in a chemical reaction network

Representation: the interpretation assigning quantitative
meaning to the qualitative description (generalizing the
mathematical idea of a representation of a quiver or algebra)

Algorithms, categorically expressed, for processing and
analyzing data. Make quantitative predictions, choose the model
which best explains a given system (often a variant of belief
propagation).

Jason Morton (Penn State) Computational categories NIST September 29 10 / 49



Want something like REPLs for commutative

algebra

In a computer algebra systems such as Macaulay2, Singular, Maple,
Mathematica, we:

tell the computer the context, e.g. polynomial ring

R = Q[x , y ] , and

type in an expression such as x2 + 3xy + (x + y)2.

The system performs some simplification according to the
axioms of a free polynomial ring (or more generally, a Gröbner
basis computation in a quotient ring R = Q[x , y ]/I ), and

displays something like 2x2 + 5xy + y 2, element of R .
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REPL/Computer algebra system for computational

category theory

In a computational cagtegory theory REPL, we

tell it the context, e.g. the tensor signature f : A→ A,
g : A→ B , with doctrine “compact closed category,” and

type in an expression such as evA ◦(idA∗ ⊗f ) ◦ coevA.

The system performs some simplification according to the
axioms of a free compact closed category, and

diplays tr(f ).

Even easier: write evA ◦(idA∗ ⊗f ) ◦ coevA == tr(f ) and have the
system return “True”

This easier problem is complete for the complexity class Graph
Isomorphism (GI). There is a partial solution that doesn’t require
solving graph isomorphism: pick a good interpretation functor.
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Monoidal languages
Given object variables O = {A1, . . . ,An}, get monoid O⊗ of
words such as (A5 ⊗ A3)⊗ A1.

A tensor signature T comprises finite sets Ob(T ) of object
variables, and Mor(T ) of morphism variables, and functions
dom, cod : Mor(T )→ Ob(T )⊗.
T defines a monoidal category MX (T ),

I augmenting Ob(T ) with a monoidal unit IT and
I Mor(T ) with a finite set of parameterized structure morphisms

PSM(T ,X ) depending on the doctrine X .

I Here X =“compact closed category”, PSM are e.g. evA for any
A, etc.

The language T ⊗,◦
CCC is all valid morphism words that can be

formed from Mor(T ) ∪ PSM(T ,CCC ), so generates the free
compact closed category over T .

Q: When do two words define the same morphism? NF?
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Constructively

Constructively, T ⊗,◦
CCC is as follows.

Each f ∈ Mor(T ) ∪ PSM(T ,CCC ) is a word.

Given words u, u′, u ⊗ u′ is a word with domain
dom(u)⊗ dom(u′) and codomain cod(u)⊗ cod(u′).

Given words w ,w ′ with dom(w ′) = cod(w), w ◦ w ′ is a word.

Mod the relations for a compact closed category, and imposing
strictness, this gives a presentation of the free strict compact closed
category over the generating set of object variables and morphisms.
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Complexity

The easy part, Solving word problems such as

evA ◦(idA∗ ⊗f ) ◦ coevA
?
= tr(A) is GI-complete.

For some reasonable choices of normal form, finding the normal
form (fixing tensor signature and doctrine = compact closed
category):

I given evA ◦(idA∗ ⊗f ) ◦ coevA, output tr(f )

is NP-complete (allows optimal contractions).

This is not such bad news. The normal form for polynomials in a
quotient ring, using Gröbner bases and Buchburger’s algorithm,
is worst case doubly exponential. Yet they are still extremely
useful and practical for many computations.

If we are willing to accept an imperfect but pretty good normal
form, or can control the term complexity in various ways, we can
get a good, fast normal form giving near-optimal contractions.

Jason Morton (Penn State) Computational categories NIST September 29 16 / 49



Computational category theory problems

term: equivalence class of monoidal words over a finite tensor
scheme, usually with certain additional properties X .

representation: an X -monoidal functor “assigning values”

Questions of a term represented in a particular quantitative category:

1 compute a (possibly partial) contraction,

2 solve the word problem (are two terms equivalent, i.e. do they
have the same representation) or compute a normal form for a
term,

3 solve the implementability problem (construct a word equivalent
to a target using a library of allowed morphisms), and

4 choose morphisms in a term to best approximate a more general
term (possibly allowing the approximating term itself to vary).
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Computational category theory is hard

term: equivalence class of monoidal words over a finite tensor
scheme, usually with certain additional properties X .

representation: an X -monoidal functor “assigning values”

Questions of a term represented in a particular category:

1 compute a (possibly partial) contraction, (#P-hard)

2 solve the word problem (are two terms equivalent, i.e. do they
have the same representation) or compute a normal form for a
term, (undecidable)

3 solve the implementability problem (construct a word equivalent
to a target using a library of allowed morphisms) (undecidable)

4 choose morphisms in a term to best approximate a more general
term (possibly allowing the approximating term itself to vary).
(NP-hard)
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Recap

Every doctrine has a free language that can be used to express
morphism terms.

This is how the machine represents domain-expert diagrams
(e.g. gene interactions, high-school science test).

A morphism term can be rewritten and simplified efficiently
indpendently of interpretation/value.

The normal form problem for morphism term subsumes query
planning, finding an efficient way to contract a network, etc.

Part of this problem can be solved “internally” by applying a
suitable functor to a value category that removes distinctions
between equal morphism terms.
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Obvious approach: rewriting

View a term as a grid of partial terms

Look for tiles of any shape in the grid and rewrite them to
something simpler

Problem: dead ends, have to choose how to associate

No known confluent terminating rewriting system

Will need to solve parts of this eventually

Jason Morton (Penn State) Computational categories NIST September 29 20 / 49



S-expression

The value of the expression

(foo bar baz)

is the result of applying function f to arguments bar and baz (which
may themselves be expressions).
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Morphism expressions

A morphism term such as evA ◦(idA∗ ⊗f ) ◦ coevA in a monoidal
category can be represented as an expression tree (AST):

(◦ (ev A) (◦ (⊗ (id A) f) (coev A)))

here ev, coev, id, are unary functions, ⊗, and ◦ are 2-ary
and (⊗ g f ) means “apply function ⊗ to arguments g and f .”

Note: more than one expression tree can represent the same
term (e.g. associate from left or right), and

more than one morphism term can represent the same morphism
in the free compact closed category (e.g. (f2 ⊗ g2) ◦ (f1 ⊗ g1) vs.
(f2 ◦ f1)⊗ (g2 ◦ g1)).
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Philosophy

Fix a doctrine X.

A morphism term (parenthesis and all) in an X-category is a
program for obtaining a value.

Don’t rewrite!

Instead, find good bindings for the symbols in another
X-category

such that when the program is executed, a normal form is
obtained as that value.

(or something from which a normal form can be extracted)
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Operad approach

Now we have not two (⊗, ◦) but one notion of composition:
function composition.

There are different ops or functions, taking different numbers of
arguments, and we impose some associativity constraints.

This matches the setting of operads.

We represent each function in the expression (such as ⊗), and
each primitive (e.g. f , evA) as an op in an operad. For the CCC
doctrine, the relevant operad is 1-cobordisms.

1-D composition in that operad is associative. So different
terms, and different trees with the same morphism give the same
answer. (up to GI issue).
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k-ary ops

The ops include

2-ary ops: ⊗, ◦
1-ary ops: (partial) traces, (partial) transposes, and

0-ary ops: evA, coevA, idA, σA,B .

Note that 0-ary ops and 2-ary ops again form a monoidal category
equivalent to the original. Each op has a representation in 1-Cob.

This depends on the type information, e.g. if f : A→ B and
g : A⊗ A→ I , the ⊗ in f ⊗ f and g ⊗ g technically represent two
different ops (although they are implemented by the same function).
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The ops φ3 and φ2 correspond to compositions, while φ1 corresponds
to a tensor product.
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Representing in / Code lowering to 1-Cob

Even when we have many objects and their duals, we can
typecheck this at the top level (when the morphism term is
formed).

Represent object variables as wires, morphism variables as
labeled identity ops, and structure morphisms ev,coev, etc. as
special 0-ary ops.

Lowered morphism term is just a 1-Cob

Representing in 1-Cob, then evaluating, gives a (typed)
morphism of 1-Cob.

This typed morphism gets rid of all relations for CCC, except
those requiring the solution of a graph isomorphism problem.
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0-ary ops from morphisms: morphism variable f

f

⇓ ρ

f
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0-ary ops from morphisms: coev : I → A⊗ A∗

⇓ ρ
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0-ary ops from morphisms: ev : A∗ ⊗ A

⇓ ρ
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Figure : Operad tree and abstract syntax tree for
(◦(◦, evA, (⊗, idA∗ , f )), coevA∗) with cobordisms.
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2-ary ops from composition: ◦

⇓ ρ
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Figure : Operad tree and abstract syntax tree for
(◦(◦, evA, (⊗, idA∗ , f )), coevA∗) with cobordisms.
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The ops φ3 and φ2 correspond to compositions, while φ1 corresponds
to a tensor product.
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Graph isomorphism issue

A hierarchy

A morphism expression is what is stored in the machine
I A strict morphism word is an equivalence class of expressions

Evaluating a morphism expression in terms of 1-Cob as we’ve
described yields a labelled 1-Cob.

I If there is only one morphism variable, labelled 1-Cobs are equal
iff the morphism terms are equal

I If there are > 1 morphism variables, a labelled 1-Cob may have
nontrivial automorphisms under permutation of the morphism
variables

I A labelled 1-Cob is an equivalence class of words (and so of
morphism expressions)

A morphism of the category is a (GI)-equivalence class of
labelled 1-Cobs, up to these automorphisms.
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Obtaining a normal form from a labeled 1-Cob

Any stable procedure for obtaining a morphism expression from
a labeled 1-Cob yields a normal form.

Probably the most interesting are efficient ones wrt some
measure of the cost of each 2-ary op.

This is where the NP-hardness appears, in finding an optimal
tree decomposition

There are many deeply developed algorithms for this problem,
and heuristics work quite well
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Algorithms authored axiomatically

When modeling, algorithms should be expressed in terms of
categorical primitives.

The right primitive for many algorithms is the well-supported
compact closed category [RSW05].

Belief propagation (and its many variants) can be expressed this
way [Morton 2014].
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(Limited) practical algorithms, even though the

problems are hard in general

Many practical questions are instances of one of these problems
I quantum programming and logic
I probabilistic graphical models,
I tensor network state approach to quantum condensed matter,
I computational complexity theory: circuits, CSP, #CSP
I even databases

So many tractable special cases, approximate algorithms, and
heuristics exist

Let’s turn these into categorical algorithms, and formalize
analogies among procedures.
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Example: belief propagation

A message-passing algorithm (Pearl 1982), for contraction,
marginalization, and optimization problems

Many extensions, analogs (survey propagation, turbo coding)

These should be the same abstract categorical algorithm, varying
the category (e.g. prob. graphical models vs. sets and relations).

To make this precise, first recall the set-up
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Monoidal languages
Given object variables O = {A1, . . . ,An}, get monoid O⊗ of
words such as (A5 ⊗ A3)⊗ A1.

A tensor signature T comprises finite sets Ob(T ) of object
variables, and Mor(T ) of morphism variables, and functions
dom, cod : Mor(T )→ Ob(T )⊗.
T defines a monoidal category MX (T ),

I augmenting Ob(T ) with a monoidal unit IT and
I Mor(T ) with a finite set of parameterized structure morphisms

PSM(T ,X ) depending on the doctrine X .

I Here X =“compact closed category”, PSM are e.g. evA for any
A, etc.

The language T ⊗,◦
CCC is all valid morphism words that can be

formed from Mor(T ) ∪ PSM(T ,CCC ), so generates the free
compact closed category over T .

Q: When do two words define the same morphism? NF?
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I -valued points: the messages

Important word problem for Belief Propagation: equality of
morphisms of type Mor(I ,A) for objects A (I -valued points).

Why?
I Want to generalize algorithms (e.g. belief propagation in the

category of vector spaces and linear transformations)
I Can’t assume objects A are sets with points (such as probability

distributions in the classical belief propagation algorithm).

But, messages are still morphisms of type Mor(I ,A) for each
object A; equate these for belief propagation equations

I Deciding if two vectors are equal up to numerical tolerance
becomes deciding a word problem in Mor(I ,A).

I These messages must also be stored somehow.
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Word problems in monoidal languages

Coherent graphical languages for some types of monoidal
categories means those word problems can be reduced to e.g.
graph isomorphism, and produces normal forms by
word7→graph 7→word.

Hence the word problem for the free closed category and free
compact closed category over a finite tensor scheme are in
LOGSPACE and P [Luk82] respectively.

Adding adjectives (X-monoidal categories) and relations, or
fixing values by applying a functor F , so that the category is no
longer free may make it easier or harder.

Proposition

The word problem and implementability problem in a monoidal
category over a finite tensor scheme are undecidable.
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I -valued points: the messages

For an efficient algorithm, need representation and word problem
for I -valued points to be efficient.

Classical belief propagation: have a monoid homomorphism,
size :Ob(T )⊗→N, from the free monoid generated by the
objects of our tensor scheme to the natural numbers.

Monoidal product 7→ multiplication of vector space dimensions

Then words in Mor(I ,A) can be stored and compared in
O(size(A)).

Now look at type of category BP will work in. Need something like
variables: objects in a well-supported compact closed category
accomplish this.
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Sum-product and belief propagation for contraction

The sum product algorithm [KFL01]: if a term is a tree, can
perform contraction according to the tree.

If not, use a tree decomposition [Hal76] to force it to be a tree,
then run sum-product.

I Tree decompositions can be computed at the symbolic level
with a cost function (e.g. dimension of each vector space); best
is NP-hard but many good approximation strategies exist.

I The result is the junction tree algorithm [LS88], also extended
to the quantum case [MS08].

Can improve on the abstract sum-product algorithm by using an
optimized message-passing version, which among other benefits
permits parallelization.

this is belief propagation
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Belief propagation in factor graphs
The algorithm operates on a factor graph, a bipartite graph with

I one part discrete random variables v ∈ V and
I one part factors u ∈ U.

Each factor (potential) assigns a real number to each
combination of states of the variables it is connected to.

Multiplying factors and normalizing if needed gives a joint
probability distribution.

Belief propagation is a message passing algorithm.
I Each message is a probability distribution over the states one

variable v can take: a vector in the associated vector space Vv .

Each factor fU at node u is a tensor in ⊗v∈nbhd(u)Vv , defines
valence(u) reshaped linear maps

fu,v : ⊗i∈nbhd(u)\vVi → Vv ,

one for each v ∈ nbhd(u).
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Messages at variables.

Compute the pointwise (Hadamard) product of the incoming
messages, and output it as the outgoing message along e.

In a probabilistic category, Hadamard product rescales so the out
message is a probability distribution.

If there are no incoming messages, output the uniform message.

Messages at factors.

Compute the tensor product of the incoming messages,

apply reshaped fu,v : ⊗i∈nbhd(u)\vVi → Vv , and output the result
as the outgoing message along the edge to v .

Resulting algorithm.

BP equations describe fixed points of the update rules.

Initial messages can be uniform distributions.

Tree factor graph: done in two “passes,” leaves to root then
root to leaves, updating messages only as they change.

Belief propagation is exact on trees
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Messages at spiders.

Apply the reshaped spider to incoming messages, and output the
result as the outgoing message.

If there are no incoming messages, treat the spider as a
Frobenius unit.

Messages at “factor” morphisms.

Compute the monoidal product of the incoming messages,

apply the reshaped f ,

output the result as the outgoing message.

Resulting algorithm.

System of BP equations are equalities of I -valued points
describing the fixed points of the update rules.

Initial messages can be chosen to be units at the spiders.

Nice behavior on trees preserved

A spider is just a special kind of morphism. To get the general
bipartite version, replace the message procedure at spiders with
another copy of the factor message procedure.
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To solve a problem, just reduce it to computational

category theory

Goal: general tools that work for any category with suitable
properties

I specialize automatically by giving a monoidal category interface

Rapidly expanding universe of applied problems given categorical
representations

I a problem-solving abstraction with the potential to be as useful
as convex programming or numerical linear algebra.
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